Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Infect Dis ; 228(Suppl 6): S414-S426, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37849399

ABSTRACT

The Togaviridae family, genus, Alphavirus, includes several mosquito-borne human pathogens with the potential to spread to near pandemic proportions. Most of these are zoonotic, with spillover infections of humans and domestic animals, but a few such as chikungunya virus (CHIKV) have the ability to use humans as amplification hosts for transmission in urban settings and explosive outbreaks. Most alphaviruses cause nonspecific acute febrile illness, with pathogenesis sometimes leading to either encephalitis or arthralgic manifestations with severe and chronic morbidity and occasional mortality. The development of countermeasures, especially against CHIKV and Venezuelan equine encephalitis virus that are major threats, has included vaccines and antibody-based therapeutics that are likely to also be successful for rapid responses with other members of the family. However, further work with these prototypes and other alphavirus pathogens should target better understanding of human tropism and pathogenesis, more comprehensive identification of cellular receptors and entry, and better understanding of structural mechanisms of neutralization.


Subject(s)
Chikungunya virus , Culicidae , Animals , Horses , Humans , Research
2.
Cell Host Microbe ; 31(8): 1288-1300.e6, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37516111

ABSTRACT

Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections pose a significant health burden. Using pre-fusion conformation fusion (F) proteins, we isolated a panel of anti-F antibodies from a human donor. One antibody (RSV-199) potently cross-neutralized 8 RSV and hMPV strains by recognizing antigenic site III, which is partially conserved in RSV and hMPV F. Next, we determined the cryoelectron microscopy (cryo-EM) structures of RSV-199 bound to RSV F trimers, hMPV F monomers, and an unexpected dimeric form of hMPV F. These structures revealed how RSV-199 engages both RSV and hMPV F proteins through conserved interactions of the antibody heavy-chain variable region and how variability within heavy-chain complementarity-determining region 3 (HCDR3) can be accommodated at the F protein interface in site-III-directed antibodies. Furthermore, RSV-199 offered enhanced protection against RSV A and B strains and hMPV in cotton rats. These findings highlight the mechanisms of broad neutralization and therapeutic potential of RSV-199.


Subject(s)
Metapneumovirus , Respiratory Syncytial Virus, Human , Humans , Metapneumovirus/metabolism , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Immunoglobulin Variable Region , Viral Fusion Proteins
3.
Proc Natl Acad Sci U S A ; 120(13): e2213690120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36961925

ABSTRACT

Selection and development of monoclonal antibody (mAb) therapeutics against pathogenic viruses depends on certain functional characteristics. Neutralization potency, or the half-maximal inhibitory concentration (IC50) values, is an important characteristic of candidate therapeutic antibodies. Structural insights into the bases of neutralization potency differences between antiviral neutralizing mAbs are lacking. In this report, we present cryo-electron microscopy (EM) reconstructions of three anti-Eastern equine encephalitis virus (EEEV) neutralizing human mAbs targeting overlapping epitopes on the E2 protein, with greater than 20-fold differences in their respective IC50 values. From our structural and biophysical analyses, we identify several constraints that contribute to the observed differences in the neutralization potencies. Cryo-EM reconstructions of EEEV in complex with these Fab fragments reveal structural constraints that dictate intravirion or intervirion cross-linking of glycoprotein spikes by their IgG counterparts as a mechanism of neutralization. Additionally, we describe critical features for the recognition of EEEV by these mAbs including the epitope-paratope interaction surface, occupancy, and kinetic differences in on-rate for binding to the E2 protein. Each constraint contributes to the extent of EEEV inhibition for blockade of virus entry, fusion, and/or egress. These findings provide structural and biophysical insights into the differences in mechanism and neutralization potencies of these antibodies, which help inform rational design principles for candidate vaccines and therapeutic antibodies for all icosahedral viruses.


Subject(s)
Encephalitis Virus, Eastern Equine , Encephalomyelitis, Equine , Humans , Horses , Animals , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Epitopes , Antibodies, Monoclonal , Neutralization Tests
4.
PLoS Pathog ; 18(5): e1010518, 2022 05.
Article in English | MEDLINE | ID: mdl-35584193

ABSTRACT

The three human pathogenic ebolaviruses: Zaire (EBOV), Bundibugyo (BDBV), and Sudan (SUDV) virus, cause severe disease with high fatality rates. Epitopes of ebolavirus glycoprotein (GP) recognized by antibodies with binding breadth for all three ebolaviruses are of major interest for rational vaccine design. In particular, the heptad repeat 2 -membrane-proximal external region (HR2-MPER) epitope is relatively conserved between EBOV, BDBV, and SUDV GP and targeted by human broadly-neutralizing antibodies. To study whether this epitope can serve as an immunogen for the elicitation of broadly-reactive antibody responses, protein design in Rosetta was employed to transplant the HR2-MPER epitope identified from a co-crystal structure with the known broadly-reactive monoclonal antibody (mAb) BDBV223 onto smaller scaffold proteins. From computational analysis, selected immunogen designs were produced as recombinant proteins and functionally validated, leading to the identification of a sterile alpha motif (SAM) domain displaying the BDBV-HR2-MPER epitope near its C terminus as a promising candidate. The immunogen was fused to one component of a self-assembling, two-component nanoparticle and tested for immunogenicity in rabbits. Robust titers of cross-reactive serum antibodies to BDBV and EBOV GPs and moderate titers to SUDV GP were induced following immunization. To confirm the structural composition of the immunogens, solution NMR studies were conducted and revealed structural flexibility in the C-terminal residues of the epitope. Overall, our study represents the first report on an epitope-focused immunogen design based on the structurally challenging BDBV-HR2-MPER epitope.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Glycoproteins , Rabbits
5.
J Exp Med ; 219(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35297953

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) remains a risk for epidemic emergence or use as an aerosolized bioweapon. To develop possible countermeasures, we isolated VEEV-specific neutralizing monoclonal antibodies (mAbs) from mice and a human immunized with attenuated VEEV strains. Functional assays and epitope mapping established that potently inhibitory anti-VEEV mAbs bind distinct antigenic sites in the A or B domains of the E2 glycoprotein and block multiple steps in the viral replication cycle including attachment, fusion, and egress. A 3.2-Å cryo-electron microscopy reconstruction of VEEV virus-like particles bound by a human Fab suggests that antibody engagement of the B domain may result in cross-linking of neighboring spikes to prevent conformational requirements for viral fusion. Prophylaxis or postexposure therapy with these mAbs protected mice against lethal aerosol challenge with VEEV. Our study defines functional and structural mechanisms of mAb protection and suggests that multiple antigenic determinants on VEEV can be targeted for vaccine or antibody-based therapeutic development.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Encephalomyelitis, Venezuelan Equine , Viral Vaccines , Aerosols , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Encephalomyelitis, Venezuelan Equine/prevention & control , Horses , Mice
6.
Cell ; 184(17): 4414-4429.e19, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34416146

ABSTRACT

Alphaviruses are emerging, mosquito-transmitted pathogens that cause musculoskeletal and neurological disease in humans. Although neutralizing antibodies that inhibit individual alphaviruses have been described, broadly reactive antibodies that protect against both arthritogenic and encephalitic alphaviruses have not been reported. Here, we identify DC2.112 and DC2.315, two pan-protective yet poorly neutralizing human monoclonal antibodies (mAbs) that avidly bind to viral antigen on the surface of cells infected with arthritogenic and encephalitic alphaviruses. These mAbs engage a conserved epitope in domain II of the E1 protein proximal to and within the fusion peptide. Treatment with DC2.112 or DC2.315 protects mice against infection by both arthritogenic (chikungunya and Mayaro) and encephalitic (Venezuelan, Eastern, and Western equine encephalitis) alphaviruses through multiple mechanisms, including inhibition of viral egress and monocyte-dependent Fc effector functions. These findings define a conserved epitope recognized by weakly neutralizing yet protective antibodies that could be targeted for pan-alphavirus immunotherapy and vaccine design.


Subject(s)
Alphavirus/immunology , Antibodies, Viral/immunology , Conserved Sequence/immunology , Epitopes/immunology , Viral Proteins/immunology , Alphavirus Infections/immunology , Alphavirus Infections/virology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/immunology , Chlorocebus aethiops , Epitope Mapping , Epitopes/chemistry , Humans , Male , Mice, Inbred C57BL , Models, Biological , Monocytes/metabolism , Vero Cells , Viral Proteins/chemistry , Virus Release
7.
Cell ; 184(17): 4430-4446.e22, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34416147

ABSTRACT

Alphaviruses cause severe arthritogenic or encephalitic disease. The E1 structural glycoprotein is highly conserved in these viruses and mediates viral fusion with host cells. However, the role of antibody responses to the E1 protein in immunity is poorly understood. We isolated E1-specific human monoclonal antibodies (mAbs) with diverse patterns of recognition for alphaviruses (ranging from Eastern equine encephalitis virus [EEEV]-specific to alphavirus cross-reactive) from survivors of natural EEEV infection. Antibody binding patterns and epitope mapping experiments identified differences in E1 reactivity based on exposure of epitopes on the glycoprotein through pH-dependent mechanisms or presentation on the cell surface prior to virus egress. Therapeutic efficacy in vivo of these mAbs corresponded with potency of virus egress inhibition in vitro and did not require Fc-mediated effector functions for treatment against subcutaneous EEEV challenge. These studies reveal the molecular basis for broad and protective antibody responses to alphavirus E1 proteins.


Subject(s)
Alphavirus/immunology , Antibodies, Viral/immunology , Cross Reactions/immunology , Viral Proteins/immunology , Virus Release/physiology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Cell Line , Chikungunya virus/immunology , Encephalitis Virus, Eastern Equine/immunology , Encephalomyelitis, Equine/immunology , Encephalomyelitis, Equine/virology , Epitope Mapping , Female , Horses , Humans , Hydrogen-Ion Concentration , Joints/pathology , Male , Mice, Inbred C57BL , Models, Biological , Protein Binding , RNA, Viral/metabolism , Receptors, Fc/metabolism , Temperature , Virion/metabolism , Virus Internalization
8.
Cell Rep ; 35(2): 108984, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852862

ABSTRACT

Antibodies that target the glycan cap epitope on the ebolavirus glycoprotein (GP) are common in the adaptive response of survivors. A subset is known to be broadly neutralizing, but the details of their epitopes and basis for neutralization are not well understood. Here, we present cryoelectron microscopy (cryo-EM) structures of diverse glycan cap antibodies that variably synergize with GP base-binding antibodies. These structures describe a conserved site of vulnerability that anchors the mucin-like domains (MLDs) to the glycan cap, which we call the MLD anchor and cradle. Antibodies that bind to the MLD cradle share common features, including use of IGHV1-69 and IGHJ6 germline genes, which exploit hydrophobic residues and form ß-hairpin structures to mimic the MLD anchor, disrupt MLD attachment, destabilize GP quaternary structure, and block cleavage events required for receptor binding. Our results provide a molecular basis for ebolavirus neutralization by broadly reactive glycan cap antibodies.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Ebolavirus/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Viral Envelope Proteins/chemistry , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Specificity , Binding Sites , Cryoelectron Microscopy , Ebolavirus/growth & development , Ebolavirus/immunology , Ebolavirus/pathogenicity , Epitopes/chemistry , Epitopes/immunology , Female , HEK293 Cells , HeLa Cells , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/pathology , Hemorrhagic Fever, Ebola/virology , Humans , Jurkat Cells , Mice , Models, Molecular , Polysaccharides/chemistry , Polysaccharides/immunology , Protein Binding , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Sequence Alignment , Sequence Homology, Amino Acid , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
9.
Cell ; 183(7): 1884-1900.e23, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33301709

ABSTRACT

Eastern equine encephalitis virus (EEEV) is one of the most virulent viruses endemic to North America. No licensed vaccines or antiviral therapeutics are available to combat this infection, which has recently shown an increase in human cases. Here, we characterize human monoclonal antibodies (mAbs) isolated from a survivor of natural EEEV infection with potent (<20 pM) inhibitory activity of EEEV. Cryo-electron microscopy reconstructions of two highly neutralizing mAbs, EEEV-33 and EEEV-143, were solved in complex with chimeric Sindbis/EEEV virions to 7.2 Å and 8.3 Å, respectively. The mAbs recognize two distinct antigenic sites that are critical for inhibiting viral entry into cells. EEEV-33 and EEEV-143 protect against disease following stringent lethal aerosol challenge of mice with highly pathogenic EEEV. These studies provide insight into the molecular basis for the neutralizing human antibody response against EEEV and can facilitate development of vaccines and candidate antibody therapeutics.


Subject(s)
Aerosols/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Encephalitis Virus, Eastern Equine/immunology , Encephalomyelitis, Equine/immunology , Encephalomyelitis, Equine/prevention & control , Adult , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Cryoelectron Microscopy , Disease Models, Animal , Encephalitis Virus, Eastern Equine/ultrastructure , Encephalomyelitis, Equine/virology , Epitopes/chemistry , Female , Glycoproteins/immunology , Humans , Mice , Models, Molecular , Mutagenesis/genetics , Neutralization Tests , Protein Binding , Protein Domains , Recombinant Proteins/immunology , Sindbis Virus/immunology , Virion/immunology , Virion/ultrastructure , Virus Internalization
10.
Nature ; 584(7821): 443-449, 2020 08.
Article in English | MEDLINE | ID: mdl-32668443

ABSTRACT

The ongoing pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health1 and the medical countermeasures available so far are limited2,3. Moreover, we currently lack a thorough understanding of the mechanisms of humoral immunity to SARS-CoV-24. Here we analyse a large panel of human monoclonal antibodies that target the spike (S) glycoprotein5, and identify several that exhibit potent neutralizing activity and fully block the receptor-binding domain of the S protein (SRBD) from interacting with human angiotensin-converting enzyme 2 (ACE2). Using competition-binding, structural and functional studies, we show that the monoclonal antibodies can be clustered into classes that recognize distinct epitopes on the SRBD, as well as distinct conformational states of the S trimer. Two potently neutralizing monoclonal antibodies, COV2-2196 and COV2-2130, which recognize non-overlapping sites, bound simultaneously to the S protein and neutralized wild-type SARS-CoV-2 virus in a synergistic manner. In two mouse models of SARS-CoV-2 infection, passive transfer of COV2-2196, COV2-2130 or a combination of both of these antibodies protected mice from weight loss and reduced the viral burden and levels of inflammation in the lungs. In addition, passive transfer of either of two of the most potent ACE2-blocking monoclonal antibodies (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on the SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic agents.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Betacoronavirus/chemistry , Binding, Competitive , COVID-19 , Cell Line , Cross Reactions , Disease Models, Animal , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Female , Humans , Macaca mulatta , Male , Mice , Middle Aged , Neutralization Tests , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pre-Exposure Prophylaxis , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
11.
Sci Immunol ; 5(49)2020 07 03.
Article in English | MEDLINE | ID: mdl-32620559

ABSTRACT

Enterovirus D68 (EV-D68) causes outbreaks of respiratory illness, and there is increasing evidence that it causes outbreaks of acute flaccid myelitis (AFM). There are no licensed therapies to prevent or treat EV-D68 infection or AFM disease. We isolated a panel of EV-D68-reactive human monoclonal antibodies that recognize diverse antigenic variants from participants with prior infection. One potently neutralizing cross-reactive antibody, EV68-228, protected mice from respiratory and neurologic disease when given either before or after infection. Cryo-electron microscopy studies revealed that EV68-228 and another potently neutralizing antibody (EV68-159) bound around the fivefold or threefold axes of symmetry on virion particles, respectively. The structures suggest diverse mechanisms of action by these antibodies. The high potency and effectiveness observed in vivo suggest that antibodies are a mechanistic correlate of protection against AFM disease and are candidates for clinical use in humans with EV-D68 infection.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Central Nervous System Viral Diseases/prevention & control , Enterovirus D, Human/immunology , Enterovirus Infections/prevention & control , Myelitis/prevention & control , Neuromuscular Diseases/prevention & control , Animals , B-Lymphocytes/immunology , Cell Line , Central Nervous System Viral Diseases/immunology , Cytokines/immunology , Enterovirus Infections/immunology , Female , Humans , Lung/immunology , Male , Mice, Knockout , Myelitis/immunology , Neuromuscular Diseases/immunology
12.
bioRxiv ; 2020 May 22.
Article in English | MEDLINE | ID: mdl-32511409

ABSTRACT

The COVID-19 pandemic is a major threat to global health for which there are only limited medical countermeasures, and we lack a thorough understanding of mechanisms of humoral immunity 1,2 . From a panel of monoclonal antibodies (mAbs) targeting the spike (S) glycoprotein isolated from the B cells of infected subjects, we identified several mAbs that exhibited potent neutralizing activity with IC 50 values as low as 0.9 or 15 ng/mL in pseudovirus or wild-type ( wt ) SARS-CoV-2 neutralization tests, respectively. The most potent mAbs fully block the receptor-binding domain of S (S RBD ) from interacting with human ACE2. Competition-binding, structural, and functional studies allowed clustering of the mAbs into defined classes recognizing distinct epitopes within major antigenic sites on the S RBD . Electron microscopy studies revealed that these mAbs recognize distinct conformational states of trimeric S protein. Potent neutralizing mAbs recognizing unique sites, COV2-2196 and COV2-2130, bound simultaneously to S and synergistically neutralized authentic SARS-CoV-2 virus. In two murine models of SARS-CoV-2 infection, passive transfer of either COV2-2916 or COV2-2130 alone or a combination of both mAbs protected mice from severe weight loss and reduced viral burden and inflammation in the lung. These results identify protective epitopes on the S RBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic cocktails.

13.
J Virol ; 93(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30728263

ABSTRACT

The human B cell response to natural filovirus infections early after recovery is poorly understood. Previous serologic studies suggest that some Ebola virus survivors exhibit delayed antibody responses with low magnitude and quality. Here, we sought to study the population of individual memory B cells induced early in convalescence. We isolated monoclonal antibodies (MAbs) from memory B cells from four survivors treated for Ebola virus disease (EVD) 1 or 3 months after discharge from the hospital. At the early time points postrecovery, the frequency of Ebola-specific B cells was low and dominated by clones that were cross-reactive with both Ebola glycoprotein (GP) and with the secreted GP (sGP) form. Of 25 MAbs isolated from four donors, only one exhibited neutralization activity. This neutralizing MAb, designated MAb EBOV237, recognizes an epitope in the glycan cap of the surface glycoprotein. In vivo murine lethal challenge studies showed that EBOV237 conferred protection when given prophylactically at a level similar to that of the ZMapp component MAb 13C6. The results suggest that the human B cell response to EVD 1 to 3 months postdischarge is characterized by a paucity of broad or potent neutralizing clones. However, the neutralizing epitope in the glycan cap recognized by EBOV237 may play a role in the early human antibody response to EVD and should be considered in rational design strategies for new Ebola virus vaccine candidates.IMPORTANCE The pathogenesis of Ebola virus disease (EVD) in humans is complex, and the mechanisms contributing to immunity are poorly understood. In particular, it appears that the quality and magnitude of the human B cell response early after recovery from EVD may be reduced compared to most viral infections. Here, we isolated human monoclonal antibodies from B cells of four survivors of EVD at 1 or 3 months after hospital discharge. Ebola-specific memory B cells early in convalescence were low in frequency, and the antibodies they encoded demonstrated poor neutralizing potencies. One neutralizing antibody that protected mice from lethal infection, EBOV237, was identified in the panel of 25 human antibodies isolated. Recognition of the glycan cap epitope recognized by EBOV237 suggests that this antigenic site should be considered in vaccine design and treatment strategies for EVD.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Immunologic Memory , Survivors , Viral Envelope Proteins/immunology , Female , Humans , Male , United States
14.
Nat Microbiol ; 4(1): 187-197, 2019 01.
Article in English | MEDLINE | ID: mdl-30455470

ABSTRACT

Eastern equine encephalitis virus (EEEV) is a mosquito-transmitted alphavirus with a high case mortality rate in humans. EEEV is a biodefence concern because of its potential for aerosol spread and the lack of existing countermeasures. Here, we identify a panel of 18 neutralizing murine monoclonal antibodies (mAbs) against the EEEV E2 glycoprotein, several of which have 'elite' activity with 50 and 99% effective inhibitory concentrations (EC50 and EC99) of less than 10 and 100 ng ml-1, respectively. Alanine-scanning mutagenesis and neutralization escape mapping analysis revealed epitopes for these mAbs in domains A or B of the E2 glycoprotein. A majority of the neutralizing mAbs blocked infection at a post-attachment stage, with several inhibiting viral membrane fusion. Administration of one dose of anti-EEEV mAb protected mice from lethal subcutaneous or aerosol challenge. These experiments define the mechanistic basis for neutralization by protective anti-EEEV mAbs and suggest a path forward for treatment and vaccine design.


Subject(s)
Antibodies, Monoclonal/immunology , Encephalitis Virus, Eastern Equine/immunology , Encephalomyelitis, Equine/immunology , Encephalomyelitis, Equine/prevention & control , Viral Envelope Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chlorocebus aethiops , Cricetinae , Encephalomyelitis, Equine/virology , Epitope Mapping , Epitopes/immunology , Female , HEK293 Cells , Humans , Mice , Protein Domains/immunology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...