Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Clin Genet ; 105(3): 294-301, 2024 03.
Article in English | MEDLINE | ID: mdl-38044714

ABSTRACT

Calmodulin-binding transcriptional activator 1 (CAMTA1) is highly expressed in the brain and plays a role in cell cycle regulation, cell differentiation, regulation of long-term memory, and initial development, maturation, and survival of cerebellar neurons. The existence of human neurological phenotypes, including cerebellar dysfunction with variable cognitive and behavioral abnormalities (CECBA), associated with CAMTA1 variants, has further supported its role in brain functions. In this study, we phenotypically and molecularly characterize the largest cohort of individuals (n = 26) with 23 novel CAMTA1 variants (frameshift-7, nonsense-6, splicing-1, initiation codon-1, missense-5, and intragenic deletions-3) and compare the findings with all previously reported cases (total = 53). We show that the most notable phenotypic findings are developmental delay/intellectual disability, unsteady or uncoordinated gait, hypotonia, behavioral problems, and eye abnormalities. In addition, there is a high incidence of dysarthria, dysgraphia, microcephaly, gastrointestinal abnormalities, sleep difficulties, and nonspecific brain MRI findings; a few of which have been under-reported. More than one third of the variants in this cohort were inherited from an asymptomatic or mildly affected parent suggesting reduced penetrance and variable expressivity. Our cohort provides a comprehensive characterization of the spectrum of phenotypes and genotypes among individuals with CECBA and the large data will facilitate counseling and formulating management plans and surveillance recommendations for these individuals.


Subject(s)
Intellectual Disability , Transcription Factors , Humans , Brain/metabolism , Calcium-Binding Proteins/genetics , Genotype , Intellectual Disability/genetics , Phenotype , Trans-Activators/genetics , Transcription Factors/genetics
2.
Genet Med ; 25(3): 100348, 2023 03.
Article in English | MEDLINE | ID: mdl-36571464

ABSTRACT

PURPOSE: RAS genes (HRAS, KRAS, and NRAS) are commonly found to be mutated in cancers, and activating RAS variants are also found in disorders of somatic mosaicism (DoSM). A survey of the mutational spectrum of RAS variants in DoSM has not been performed. METHODS: A total of 938 individuals with suspected DoSM underwent high-sensitivity clinical next-generation sequencing-based testing. We investigated the mutational spectrum and genotype-phenotype associations of mosaic RAS variants. RESULTS: In this article, we present a series of individuals with DoSM with RAS variants. Classic hotspots, including Gly12, Gly13, and Gln61 constituted the majority of RAS variants observed in DoSM. Furthermore, we present 12 individuals with HRAS and KRAS in-frame duplication/insertion (dup/ins) variants in the switch II domain. Among the 18.3% individuals with RAS in-frame dup/ins variants, clinical findings were mainly associated with vascular malformations. Hotspots were associated with a broad phenotypic spectrum, including vascular tumors, vascular malformations, nevoid proliferations, segmental overgrowth, digital anomalies, and combinations of these. The median age at testing was higher and the variant allelic fraction was lower in individuals with in-frame dup/ins variants than those in individuals with mosaic RAS hotspots. CONCLUSION: Our work provides insight into the allelic and clinical heterogeneity of mosaic RAS variants in nonmalignant conditions.


Subject(s)
Mosaicism , Vascular Malformations , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Mutation , Alleles , Vascular Malformations/genetics
3.
Genet Med ; 24(5): 1045-1053, 2022 05.
Article in English | MEDLINE | ID: mdl-35058154

ABSTRACT

PURPOSE: In a large cohort of 373 pediatric patients with Marfan syndrome (MFS) with a severe cardiovascular phenotype, we explored the proportion of patients with MFS with a pathogenic FBN1 variant and analyzed whether the type/location of FBN1 variants was associated with specific clinical characteristics and response to treatment. Patients were recruited on the basis of the following criteria: aortic root z-score > 3, age 6 months to 25 years, no prior or planned surgery, and aortic root diameter < 5 cm. METHODS: Targeted resequencing and deletion/duplication testing of FBN1 and related genes were performed. RESULTS: We identified (likely) pathogenic FBN1 variants in 91% of patients. Ectopia lentis was more frequent in patients with dominant-negative (DN) variants (61%) than in those with haploinsufficient variants (27%). For DN FBN1 variants, the prevalence of ectopia lentis was highest in the N-terminal region (84%) and lowest in the C-terminal region (17%). The association with a more severe cardiovascular phenotype was not restricted to DN variants in the neonatal FBN1 region (exon 25-33) but was also seen in the variants in exons 26 to 49. No difference in the therapeutic response was detected between genotypes. CONCLUSION: Important novel genotype-phenotype associations involving both cardiovascular and extra-cardiovascular manifestations were identified, and existing ones were confirmed. These findings have implications for prognostic counseling of families with MFS.


Subject(s)
Ectopia Lentis , Marfan Syndrome , Biological Variation, Population , Child , Ectopia Lentis/complications , Ectopia Lentis/genetics , Fibrillin-1/genetics , Fibrillins/genetics , Genotype , Humans , Marfan Syndrome/genetics , Mutation , Phenotype
4.
Eur J Hum Genet ; 30(1): 111-116, 2022 01.
Article in English | MEDLINE | ID: mdl-34707297

ABSTRACT

ITSN1 plays an important role in brain development. Recent studies in large cohorts of subjects with neurodevelopmental disorders have identified de novo variants in ITSN1 gene thereby suggesting that this gene is involved in the development of such disorders. The aim of this study is to provide further proof of such a link. We performed trio exome sequencing in a patient presenting autism, intellectual disability, and severe behavioral difficulties. Additional affected patients with a neurodevelopmental disorder harboring a heterozygous variant in ITSN1 (NM_003024.2) were collected through a worldwide collaboration. All patients underwent detailed phenotypic and genetic assessment and data was collected and shared by healthcare givers. We identified ten novel patients from eight families with heterozygous truncating or missense variants in ITSN1 gene. In addition, four previously published patients from large meta-analysis studies were included. In total, 7/14 patients presented a de novo variant in ITSN1. All patients showed neurodevelopmental disorders from autism spectrum disorders (90%), intellectual disability (86%), and epilepsy (30%). We demonstrated that truncating variants are in the first half of ITSN1 whereas missense variants are clustered in C-terminal region. We suggest ITSN1 gene is involved in development of an autism spectrum disorder with variable additional neurodevelopmental deficiency, thus confirming the hypothesis that ITSN1 is important for brain development.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , Intellectual Disability/genetics , Adaptor Proteins, Vesicular Transport/chemistry , Adaptor Proteins, Vesicular Transport/metabolism , Adolescent , Adult , Child , Child, Preschool , Developmental Disabilities/pathology , Epilepsy/diagnosis , Genes, Dominant , Humans , Intellectual Disability/pathology , Loss of Function Mutation , Male , Mutation, Missense , Phenotype
5.
Am J Med Genet A ; 185(7): 2190-2197, 2021 07.
Article in English | MEDLINE | ID: mdl-33931933

ABSTRACT

Spinal muscular atrophy with congenital bone fractures 2 (SMABF2), a type of arthrogryposis multiplex congenita (AMC), is characterized by congenital joint contractures, prenatal fractures of long bones, and respiratory distress and results from biallelic variants in ASCC1. Here, we describe an infant with severe, diffuse hypotonia, congenital contractures, and pulmonary hypoplasia characteristic of SMABF2, with the unique features of cleft palate, small spleen, transverse liver, and pulmonary thromboemboli with chondroid appearance. This infant also had impaired coagulation with diffuse petechiae and ecchymoses which has only been reported in one other infant with AMC. Using trio whole genome sequencing, our proband was identified to have biallelic variants in ASCC1. Using deep next generation sequencing of parental cDNA, we characterized alteration of splicing encoded by the novel, maternally inherited ASCC1 variant (c.297-8 T > G) which provides a mechanism for functional pathogenicity. The paternally inherited ASCC1 variant is a rare nonsense variant (c.466C > T; p.Arg156*) that has been previously identified in one other infant with AMC. This report extends the phenotypic characteristics of ASCC1-associated AMC (SMABF2) and describes a novel intronic variant that partially disrupts RNA splicing.


Subject(s)
Arthrogryposis/genetics , Carrier Proteins/genetics , Muscular Atrophy, Spinal/genetics , Arthrogryposis/diagnostic imaging , Arthrogryposis/physiopathology , Codon, Nonsense/genetics , Female , Humans , Infant, Newborn , Muscular Atrophy, Spinal/diagnostic imaging , Muscular Atrophy, Spinal/physiopathology , Whole Genome Sequencing
6.
Genet Med ; 23(6): 1028-1040, 2021 06.
Article in English | MEDLINE | ID: mdl-33658631

ABSTRACT

PURPOSE: We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis. METHODS: We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes. RESULTS: These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. CONCLUSION: These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Adult , Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Humans , Intellectual Disability/genetics , Regulatory Factor X Transcription Factors , Transcription Factors/genetics
7.
Am J Med Genet A ; 185(2): 544-548, 2021 02.
Article in English | MEDLINE | ID: mdl-33184947

ABSTRACT

Chromodomain helicase DNA-binding protein 7 (CHD7) pathogenic variants are identified in more than 90% of infants and children with CHARGE (Coloboma of the iris, retina, and/or optic disk; congenital Heart defects, choanal Atresia, Retardation of growth and development, Genital hypoplasia, and characteristic outer and inner Ear anomalies and deafness) syndrome. Approximately, 10% of cases have no known genetic cause identified. We report a male child with clinical features of CHARGE syndrome and nondiagnostic genetic testing that included chromosomal microarray, CHD7 sequencing and deletion/duplication analysis, SEMA3E sequencing, and trio exome and whole-genome sequencing (WGS). We used a comprehensive clinical assessment, genome-wide methylation analysis (GMA), reanalysis of WGS data, and CHD7 RNA studies to discover a novel variant that causes CHD7 haploinsufficiency. The 7-year-old Hispanic male proband has typical phenotypic features of CHARGE syndrome. GMA revealed a CHD7-associated epigenetic signature. Reanalysis of the WGS data with focused bioinformatic analysis of CHD7 detected a novel, de novo 15 base pair deletion in Intron 4 of CHD7 (c.2239-20_2239-6delGTCTTGGGTTTTTGT [NM_017780.3]). Using proband RNA, we confirmed that this novel deletion causes CHD7 haploinsufficiency by disrupting the canonical 3' splice site and introducing a premature stop codon. Integrated genomic, epigenomic, and transcriptome analyses discovered a novel CHD7 variant that causes CHARGE syndrome.


Subject(s)
CHARGE Syndrome/genetics , Choanal Atresia/genetics , Coloboma/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Heart Defects, Congenital/genetics , CHARGE Syndrome/complications , CHARGE Syndrome/pathology , Child , Child, Preschool , Choanal Atresia/complications , Choanal Atresia/pathology , Coloboma/complications , Coloboma/pathology , Heart Defects, Congenital/complications , Heart Defects, Congenital/pathology , Humans , Infant , Introns/genetics , Male , Mutation/genetics , Phenotype , Exome Sequencing
8.
Sci Adv ; 6(49)2020 12.
Article in English | MEDLINE | ID: mdl-33268356

ABSTRACT

Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation.


Subject(s)
Histones , Neurodegenerative Diseases , Animals , Forkhead Transcription Factors/genetics , Germ-Line Mutation , Histones/genetics , Histones/metabolism , Humans , Neurodegenerative Diseases/genetics , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism
9.
Am J Med Genet A ; 182(8): 1957-1959, 2020 08.
Article in English | MEDLINE | ID: mdl-32462795

ABSTRACT

Loeys-Dietz syndrome is a heritable disorder of the connective tissue leading to multisystem involvement including craniofacial features, skeletal abnormalities, cutaneous findings and early-onset and aggressive disease of the aorta and its branches. There are multiple types of Loeys-Dietz syndrome related to pathogenic variants in TGFBR1, TGFBR2, SMAD3, TGFB2, and TGFB3. Individuals with Loeys-Dietz syndrome may be misdiagnosed as having Marfan syndrome due to shared phenotypic features and aortic root dilation. However, ectopia lentis has been an important discriminating feature, being unique to Marfan syndrome and not reported to be associated with Loeys-Dietz syndrome. We report the case of a 46-year-old woman with Loeys-Dietz syndrome type 4 due to a pathogenic variant in TGFB2 who was diagnosed with ectopia lentis at age 44. The patient underwent whole exome sequencing and no other pathogenic variants were found to explain the ectopia lentis. Our findings indicate that ectopia lentis may be an uncommon finding in Loeys-Dietz syndrome type 4 and emphasize the importance of genetic testing in familial thoracic aortic aneurysm disease.


Subject(s)
Aortic Aneurysm, Thoracic/genetics , Ectopia Lentis/genetics , Loeys-Dietz Syndrome/genetics , Transforming Growth Factor beta2/genetics , Adult , Aortic Aneurysm, Thoracic/complications , Aortic Aneurysm, Thoracic/diagnosis , Aortic Aneurysm, Thoracic/pathology , Ectopia Lentis/complications , Ectopia Lentis/diagnosis , Ectopia Lentis/pathology , Female , Humans , Loeys-Dietz Syndrome/complications , Loeys-Dietz Syndrome/diagnosis , Loeys-Dietz Syndrome/pathology , Male , Middle Aged , Mutation/genetics
10.
Nat Commun ; 11(1): 595, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001716

ABSTRACT

Developmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients' primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy.


Subject(s)
Epilepsy/genetics , Genes, Recessive , Loss of Function Mutation/genetics , Oxidoreductases/genetics , Uridine Diphosphate Glucose Dehydrogenase/genetics , Adolescent , Alleles , Animals , Child , Child, Preschool , Female , Humans , Infant , Kinetics , Male , Organoids/pathology , Oxidoreductases/chemistry , Pedigree , Protein Domains , Syndrome , Zebrafish
11.
Genet Med ; 22(3): 524-537, 2020 03.
Article in English | MEDLINE | ID: mdl-31578471

ABSTRACT

PURPOSE: Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved. METHODS: Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various types ofSOX5 alterations. Functional consequences of selected substitutions were investigated. RESULTS: Microdeletions and truncating variants occurred throughout SOX5. In contrast, most missense variants clustered in the pivotal SOX-specific high-mobility-group domain. The latter variants prevented SOX5 from binding DNA and promoting transactivation in vitro, whereas missense variants located outside the high-mobility-group domain did not. Clinical manifestations and severity varied among patients. No clear genotype-phenotype correlations were found, except that missense variants outside the high-mobility-group domain were generally better tolerated. CONCLUSIONS: This study extends the clinical and genetic spectrum associated with LAMSHF and consolidates evidence that SOX5 haploinsufficiency leads to variable degrees of intellectual disability, language delay, and other clinical features.


Subject(s)
DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , SOXD Transcription Factors/genetics , Adolescent , Adult , Animals , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Haploinsufficiency/genetics , Humans , Infant , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Language Development Disorders/diagnosis , Language Development Disorders/genetics , Language Development Disorders/pathology , Male , Mutation, Missense/genetics , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/pathology , Pedigree , Phenotype , Young Adult
12.
Genet Med ; 22(3): 547-556, 2020 03.
Article in English | MEDLINE | ID: mdl-31649276

ABSTRACT

PURPOSE: Treacher Collins syndrome (TCS) is a rare autosomal dominant mandibulofacial dysostosis, with a prevalence of 0.2-1/10,000. Features include bilateral and symmetrical malar and mandibular hypoplasia and facial abnormalities due to abnormal neural crest cell (NCC) migration and differentiation. To date, three genes have been identified: TCOF1, POLR1C, and POLR1D. Despite a large number of patients with a molecular diagnosis, some remain without a known genetic anomaly. METHODS: We performed exome sequencing for four individuals with TCS but who were negative for pathogenic variants in the known causative genes. The effect of the pathogenic variants was investigated in zebrafish. RESULTS: We identified three novel pathogenic variants in POLR1B. Knockdown of polr1b in zebrafish induced an abnormal craniofacial phenotype mimicking TCS that was associated with altered ribosomal gene expression, massive p53-associated cellular apoptosis in the neuroepithelium, and reduced number of NCC derivatives. CONCLUSION: Pathogenic variants in the RNA polymerase I subunit POLR1B might induce massive p53-dependent apoptosis in a restricted neuroepithelium area, altering NCC migration and causing cranioskeletal malformations. We identify POLR1B as a new causative gene responsible for a novel TCS syndrome (TCS4) and establish a novel experimental model in zebrafish to study POLR1B-related TCS.


Subject(s)
Craniofacial Abnormalities/genetics , DNA-Directed RNA Polymerases/genetics , Mandibulofacial Dysostosis/genetics , Nuclear Proteins/genetics , Phosphoproteins/genetics , Animals , Apoptosis/genetics , Cell Differentiation/genetics , Cell Movement/genetics , Craniofacial Abnormalities/pathology , Genetic Predisposition to Disease , Humans , Mandibulofacial Dysostosis/pathology , Mutation , Neural Crest/abnormalities , Neural Crest/pathology , Tumor Suppressor Protein p53/genetics , Exome Sequencing , Zebrafish/genetics
13.
Hum Mutat ; 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31646703

ABSTRACT

We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modelling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology (HPO) terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of TAF1/MRXS33 intellectual disability syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for genes mapping to chromosome X. This article is protected by copyright. All rights reserved.

16.
Eur J Hum Genet ; 27(5): 738-746, 2019 05.
Article in English | MEDLINE | ID: mdl-30679813

ABSTRACT

Determining pathogenicity of genomic variation identified by next-generation sequencing techniques can be supported by recurrent disruptive variants in the same gene in phenotypically similar individuals. However, interpretation of novel variants in a specific gene in individuals with mild-moderate intellectual disability (ID) without recognizable syndromic features can be challenging and reverse phenotyping is often required. We describe 24 individuals with a de novo disease-causing variant in, or partial deletion of, the F-box only protein 11 gene (FBXO11, also known as VIT1 and PRMT9). FBXO11 is part of the SCF (SKP1-cullin-F-box) complex, a multi-protein E3 ubiquitin-ligase complex catalyzing the ubiquitination of proteins destined for proteasomal degradation. Twenty-two variants were identified by next-generation sequencing, comprising 2 in-frame deletions, 11 missense variants, 1 canonical splice site variant, and 8 nonsense or frameshift variants leading to a truncated protein or degraded transcript. The remaining two variants were identified by array-comparative genomic hybridization and consisted of a partial deletion of FBXO11. All individuals had borderline to severe ID and behavioral problems (autism spectrum disorder, attention-deficit/hyperactivity disorder, anxiety, aggression) were observed in most of them. The most relevant common facial features included a thin upper lip and a broad prominent space between the paramedian peaks of the upper lip. Other features were hypotonia and hyperlaxity of the joints. We show that de novo variants in FBXO11 cause a syndromic form of ID. The current series show the power of reverse phenotyping in the interpretation of novel genetic variances in individuals who initially did not appear to have a clear recognizable phenotype.


Subject(s)
Abnormalities, Multiple/genetics , Behavior , F-Box Proteins/genetics , Genetic Variation , Intellectual Disability/genetics , Protein-Arginine N-Methyltransferases/genetics , Gene Deletion , Humans , Syndrome
17.
Am J Hum Genet ; 104(1): 164-178, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30580808

ABSTRACT

SMARCC2 (BAF170) is one of the invariable core subunits of the ATP-dependent chromatin remodeling BAF (BRG1-associated factor) complex and plays a crucial role in embryogenesis and corticogenesis. Pathogenic variants in genes encoding other components of the BAF complex have been associated with intellectual disability syndromes. Despite its significant biological role, variants in SMARCC2 have not been directly associated with human disease previously. Using whole-exome sequencing and a web-based gene-matching program, we identified 15 individuals with variable degrees of neurodevelopmental delay and growth retardation harboring one of 13 heterozygous variants in SMARCC2, most of them novel and proven de novo. The clinical presentation overlaps with intellectual disability syndromes associated with other BAF subunits, such as Coffin-Siris and Nicolaides-Baraitser syndromes and includes prominent speech impairment, hypotonia, feeding difficulties, behavioral abnormalities, and dysmorphic features such as hypertrichosis, thick eyebrows, thin upper lip vermilion, and upturned nose. Nine out of the fifteen individuals harbor variants in the highly conserved SMARCC2 DNA-interacting domains (SANT and SWIRM) and present with a more severe phenotype. Two of these individuals present cardiac abnormalities. Transcriptomic analysis of fibroblasts from affected individuals highlights a group of differentially expressed genes with possible roles in regulation of neuronal development and function, namely H19, SCRG1, RELN, and CACNB4. Our findings suggest a novel SMARCC2-related syndrome that overlaps with neurodevelopmental disorders associated with variants in BAF-complex subunits.


Subject(s)
Developmental Disabilities/complications , Developmental Disabilities/genetics , Intellectual Disability/complications , Intellectual Disability/genetics , Mutation , Transcription Factors/genetics , Abnormalities, Multiple/genetics , Adolescent , Child , Child, Preschool , DNA-Binding Proteins , Face/abnormalities , Female , Hand Deformities, Congenital/genetics , Humans , Male , Micrognathism/genetics , Neck/abnormalities , Reelin Protein , Syndrome
18.
Nat Commun ; 9(1): 4619, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30397230

ABSTRACT

Chromatin remodeling is of crucial importance during brain development. Pathogenic alterations of several chromatin remodeling ATPases have been implicated in neurodevelopmental disorders. We describe an index case with a de novo missense mutation in CHD3, identified during whole genome sequencing of a cohort of children with rare speech disorders. To gain a comprehensive view of features associated with disruption of this gene, we use a genotype-driven approach, collecting and characterizing 35 individuals with de novo CHD3 mutations and overlapping phenotypes. Most mutations cluster within the ATPase/helicase domain of the encoded protein. Modeling their impact on the three-dimensional structure demonstrates disturbance of critical binding and interaction motifs. Experimental assays with six of the identified mutations show that a subset directly affects ATPase activity, and all but one yield alterations in chromatin remodeling. We implicate de novo CHD3 mutations in a syndrome characterized by intellectual disability, macrocephaly, and impaired speech and language.


Subject(s)
DNA Helicases/genetics , Developmental Disabilities/genetics , Language Disorders/genetics , Megalencephaly/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mutation, Missense , Neurodevelopmental Disorders/genetics , Protein Domains/genetics , Speech Disorders/genetics , Adenosine Triphosphatases , Child, Preschool , Chromatin Assembly and Disassembly , Female , Gene Expression , Genotype , HEK293 Cells , Humans , Intellectual Disability/genetics , Male , Models, Molecular , Phenotype , Whole Genome Sequencing
19.
Am J Hum Genet ; 103(6): 968-975, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30414627

ABSTRACT

Wiedemann-Rautenstrauch syndrome (WRS), also known as neonatal progeroid syndrome, is a rare disorder of unknown etiology. It has been proposed to be autosomal-recessive and is characterized by variable clinical features, such as intrauterine growth restriction and poor postnatal weight gain, characteristic facial features (triangular appearance to the face, convex nasal profile or pinched nose, and small mouth), widened fontanelles, pseudohydrocephalus, prominent scalp veins, lipodystrophy, and teeth abnormalities. A previous report described a single WRS patient with bi-allelic truncating and splicing variants in POLR3A. Here we present seven additional infants, children, and adults with WRS and bi-allelic truncating and/or splicing variants in POLR3A. POLR3A, the largest subunit of RNA polymerase III, is a DNA-directed RNA polymerase that transcribes many small noncoding RNAs that regulate transcription, RNA processing, and translation. Bi-allelic missense variants in POLR3A have been associated with phenotypes distinct from WRS: hypogonadotropic hypogonadism and hypomyelinating leukodystrophy with or without oligodontia. Our findings confirm the association of bi-allelic POLR3A variants with WRS, expand the clinical phenotype of WRS, and suggest specific POLR3A genotypes associated with WRS and hypomyelinating leukodystrophy.


Subject(s)
Fetal Growth Retardation/genetics , Genetic Variation/genetics , Loss of Heterozygosity/genetics , Progeria/genetics , RNA Polymerase III/genetics , Adolescent , Adult , Alleles , Child, Preschool , Female , Genotype , Humans , Phenotype , Young Adult
20.
Circulation ; 136(11): 1037-1048, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28687708

ABSTRACT

BACKGROUND: Most arteriovenous malformations (AVMs) are localized and occur sporadically. However, they also can be multifocal in autosomal-dominant disorders, such as hereditary hemorrhagic telangiectasia and capillary malformation (CM)-AVM. Previously, we identified RASA1 mutations in 50% of patients with CM-AVM. Herein we studied non-RASA1 patients to further elucidate the pathogenicity of CMs and AVMs. METHODS: We conducted a genome-wide linkage study on a CM-AVM family. Whole-exome sequencing was also performed on 9 unrelated CM-AVM families. We identified a candidate gene and screened it in a large series of patients. The influence of several missense variants on protein function was also studied in vitro. RESULTS: We found evidence for linkage in 2 loci. Whole-exome sequencing data unraveled 4 distinct damaging variants in EPHB4 in 5 families that cosegregated with CM-AVM. Overall, screening of EPHB4 detected 47 distinct mutations in 54 index patients: 27 led to a premature stop codon or splice-site alteration, suggesting loss of function. The other 20 are nonsynonymous variants that result in amino acid substitutions. In vitro expression of several mutations confirmed loss of function of EPHB4. The clinical features included multifocal CMs, telangiectasias, and AVMs. CONCLUSIONS: We found EPHB4 mutations in patients with multifocal CMs associated with AVMs. The phenotype, CM-AVM2, mimics RASA1-related CM-AVM1 and also hereditary hemorrhagic telangiectasia. RASA1-encoded p120RASGAP is a direct effector of EPHB4. Our data highlight the pathogenetic importance of this interaction and indicts EPHB4-RAS-ERK signaling pathway as a major cause for AVMs.


Subject(s)
Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/genetics , Capillaries/abnormalities , Germ-Line Mutation/genetics , MAP Kinase Signaling System/physiology , Port-Wine Stain/diagnosis , Port-Wine Stain/genetics , Receptor, EphB4/genetics , p120 GTPase Activating Protein/genetics , Databases, Genetic , Female , Genome-Wide Association Study/methods , Humans , Male , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...