Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; 951: 175740, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39181252

ABSTRACT

Stream water quality can be impacted by a myriad of fecal pollution sources and waste management practices. Identifying origins of fecal contamination can be challenging, especially in high order streams where water samples are influenced by pollution from large drainage areas. Strategic monitoring of tributaries can be an effective strategy to identify conditions that influence local water quality. Water quality is assessed using fecal indicator bacteria (FIB); however, FIB cannot differentiate sources of fecal contamination nor indicate the presence of disease-causing viruses. Under different land use scenarios, three small stream catchments were investigated under 'wet' and 'dry' conditions (Scenario 1: heavy residential; Scenario 2: rural residential; and Scenario 3: undeveloped/agricultural). To identify fecal pollution trends, host-associated genetic targets HF183/BacR287 (human), Rum2Bac (ruminant), GFD (avian), and DG3 (canine) were analyzed along with FIB (Escherichia coli and enterococci), viral indicators (somatic and F+ coliphage), six general water quality parameters, and local rainfall. Levels of E. coli exceeded single sample maximum limits (235 CFU/100 mL) in 70.7 % of samples, enterococci (70 CFU/100 mL) in 100 % of samples, and somatic coliphage exceeded advisory thresholds (600 PFU/L) in 34.1 % of samples. The detection frequency for the human-associated genetic marker was highest in Scenario 3 (50 % of samples) followed by Scenario 2 (46 %), while the ruminant-associated marker was most prevalent in Scenario 1 (64 %). Due to the high proportion of qPCR-based measurements below the limit of quantification, a Bayesian data analysis approach was applied to investigate links between host-associated genetic marker occurrence with that of rainfall and fecal indicator levels. Multiple trends associated with small stream monitoring were revealed, emphasizing the role of rainfall, the utility of fecal source information to improve water quality management. And furthermore, water quality monitoring with bacterial or viral methodologies can alter the interpretation of fecal pollution sources in impaired waters.


Subject(s)
Environmental Monitoring , Feces , Rivers , Water Microbiology , Water Pollution , Water Quality , Environmental Monitoring/methods , Feces/microbiology , Feces/virology , Rivers/microbiology , Rivers/virology , Water Pollution/analysis , Water Pollution/statistics & numerical data , Escherichia coli/genetics
2.
Water Res ; 259: 121857, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38851116

ABSTRACT

Urban areas are built environments containing substantial amounts of impervious surfaces (e.g., streets, sidewalks, roof tops). These areas often include elaborately engineered drainage networks designed to collect, transport, and discharge untreated stormwater into local surface waters. When left uncontrolled, these discharges may contain unsafe levels of fecal waste from sources such as sanitary sewage and wildlife even under dry weather conditions. This study evaluates paired measurements of host-associated genetic markers (log10 copies per reaction) indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), canine (DG3), and avian (GFD) fecal sources, 12-hour cumulative precipitation (mm), four catchment land use metrics determined by global information system (GIS) mapping, and Escherichia coli (MPN/100 ml) from seven municipal separate storm sewer system outfall locations situated at the southern portion of the Anacostia River Watershed (District of Columbia, U.S.A.). A total of 231 discharge samples were collected twice per month (n = 24 sampling days) and after rain events (n = 9) over a 13-month period. Approximately 50 % of samples (n = 116) were impaired, exceeding the local E. coli single sample maximum of 2.613 log10 MPN/100 ml. Genetic quality controls indicated the absence of amplification inhibition in 97.8 % of samples, however 14.7 % (n = 34) samples showed bias in DNA recovery. Of eligible samples, quantifiable levels were observed for avian (84.1 %), human (57.4 % for HF183/BacR287 and 40 % for HumM2), canine (46.7 %), and ruminant (15.9 %) host-associated genetic markers. Potential links between paired measurements are explored with a recently developed Bayesian qPCR censored data analysis approach. Findings indicate that human, pet, and urban wildlife all contribute to storm outfall discharge water quality in the District of Columbia, but pollutant source contributions vary based on 'wet' and 'dry' conditions and catchment land use, demonstrating that genetic-based fecal source identification methods combined with GIS land use mapping can complement routine E. coli monitoring to improve stormwater management in urban areas.


Subject(s)
Escherichia coli , Feces , Sewage , Feces/microbiology , Animals , Humans , Escherichia coli/genetics , Weather , Rain , Cities , Environmental Monitoring , Dogs , Birds
3.
Sci Total Environ ; 934: 173220, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38761521

ABSTRACT

The number of gray seals (Halichoerus grypus) observed along the United States Northwest Atlantic region has been increasing for decades. These colonial animals often haul-out on beaches seasonally in numbers ranging from a few individuals to several thousands. While these larger aggregations are an important part of gray seal behavior, there is public concern that haul-outs could lead to large amounts of fecal waste in recreational areas, potentially resulting in beach closures. Yet, data to confirm whether these animals contribute to beach closures is lacking and minimal information is available on the occurrence of key water quality monitoring genetic markers in gray seal scat. This study evaluates the concentration of E. coli (EC23S857), enterococci (Entero1a), and fecal Bacteroidetes (GenBac3) as well as six fecal source identification genetic markers (HF183/BacR287, HumM2, CPQ_056, Rum2Bac, DG3, and GFD) measured by qPCR in 48 wild gray seal scat samples collected from two haul-out areas in Cape Cod (Massachusetts, U.S.A.). Findings indicate that FIB genetic markers are shed in gray seal scat at significantly different concentrations with the Entero1a genetic marker exhibiting the lowest average concentration (-0.73 log10 estimated mean copies per nanogram of DNA). In addition, systematic testing of scat samples demonstrated that qPCR assays targeting host-associated genetic markers indicative of human, ruminant, and canine fecal pollution sources remain highly specific in waters frequented by gray seals (>97 % specificity).


Subject(s)
Environmental Monitoring , Feces , Seals, Earless , Water Quality , Feces/microbiology , Animals , Genetic Markers , Environmental Monitoring/methods , Seals, Earless/genetics , Seals, Earless/microbiology , Water Microbiology , Bacteria/genetics , Bacteria/isolation & purification , Escherichia coli/genetics , Bathing Beaches , Recreation
4.
Water Res ; 255: 121482, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38598887

ABSTRACT

Numerous qPCR-based methods are available to estimate the concentration of fecal pollution sources in surface waters. However, qPCR fecal source identification data sets often include a high proportion of non-detections (reactions failing to attain a prespecified minimal signal intensity for detection) and measurements below the assay lower limit of quantification (minimal signal intensity required to estimate target concentration), making it challenging to interpret results in a quantitative manner while accounting for error. In response, a Bayesian statistic based Fecal Score (FS) approach was developed that estimates the weighted average concentration of a fecal source identification genetic marker across a defined group of samples, mathematically incorporating qPCR measurements from all samples. Yet, implementation is technically demanding and computationally intensive requiring specialized training, the use of expert software, and access to high performance computing. To address these limitations, this study reports a novel approximation model for FS determination based on a frequentist approach. The performance of the Bayesian and Frequentist models are compared using fecal source identification qPCR data representative of different 'censored' data scenarios from a recently published study focusing on the impact of stormwater discharge in urban streams. In addition, data set eligibility recommendations for the responsible use of these models are presented. Findings indicate that the Frequentist model can generate similar average concentrations and uncertainty estimates for FS, compared to the original Bayesian approach. The Frequentist model should make calculations less computationally and technically intensive, allowing for the development of easier to use data analysis tools for fecal source identification applications.

5.
PeerJ ; 11: e15474, 2023.
Article in English | MEDLINE | ID: mdl-37342359

ABSTRACT

Background: Surgical masks remain a focal part of the CDC guidelines to decrease COVID-19 transmission. Evidence refuting significant effects of masking on ventilation is mostly limited to small studies, with a paucity of studies on children, and none comparing children to adults. Methods: A total of 119 subjects were enrolled (71 adults, 49 children) in a prospective interventional study with each subject serving as their own mask-free control. End tidal CO2 (ETCO2), inspired CO2 (ICO2), and respiratory rate were measured by nasal cannula attached to an anesthesia machine D-fend module. Pulse oximetry and heart rate were also followed. After the mask-free period, an ASTM Level 3 disposable surgical mask was donned and 15 min of mask-worn data were collected. Results: A steady state was confirmed for ETCO2 and ICO2 over the masked period, and mean ICO2 levels rose significantly (p < 0.001) after masking in all age groups. The increase in ICO2 for the 2- to 7-year-old group of 4.11 mmHg (3.23-4.99), was significantly higher (p < 0.001) than the final ΔICO2 levels for both the 7- to 14-year-old group, 2.45 mmHg (1.79-3.12), and adults, 1.47 mmHg (1.18-1.76). For the pediatric group there was a negative, significant correlation between age and ΔICO2, r = -0.49, p < 0.001. Masking resulted in a statistically significant (p < 0.01) rise in ETCO2 levels of 1.30 mmHg in adults and 1.36 mmHg in children. The final respective ETCO2 levels, 34.35 (33.55-35.15) and 35.07 (34.13-36.01), remained within normal limits. Pulse oximetry, heart rate, and respiratory rate were not significantly affected. Discussion: The physiology of mechanical dead space is discussed, including the inverse relationship of subject age vs ICO2. The methodology and results are compared to previously published studies which detracted from the physiologic safety of surgical masking. Conclusions: The wearing of a surgical mask results in a statistically significant rise in ICO2 and a smaller rise in ETCO2. Because ETCO2 and other variables remain well within normal limits, these changes are clinically insignificant.


Subject(s)
COVID-19 , Carbon Dioxide , Humans , Child , Adult , Child, Preschool , Adolescent , Masks , Prospective Studies , Respiration
6.
PLoS One ; 18(1): e0278548, 2023.
Article in English | MEDLINE | ID: mdl-36701383

ABSTRACT

Municipal stormwater systems are designed to collect, transport, and discharge precipitation from a defined catchment area into local surface waters. However, these discharges may contain unsafe levels of fecal waste. Paired measurements of Escherichia coli, precipitation, three land use metrics determined by geographic information system (GIS) mapping, and host-associated genetic markers indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), dog (DG3), and avian (GFD) fecal sources were assessed in 231 urban stream samples impacted by two or more municipal stormwater outfalls. Receiving water samples were collected twice per month (n = 24) and after rain events (n = 9) from seven headwaters of the Anacostia River in the District of Columbia (United States) exhibiting a gradient of impervious surface, residential, and park surface areas. Almost 50% of stream samples (n = 103) were impaired, exceeding the local E. coli single sample maximum assessment level (410 MPN/100 ml). Fecal scores (average log10 copies per 100 ml) were determined to prioritize sites by pollution source and to evaluate potential links with land use, rainfall, and E. coli levels using a recently developed censored data analysis approach. Dog, ruminant, and avian fecal scores were almost always significantly increased after rain or when E. coli levels exceeded the local benchmark. Human fecal pollution trends showed the greatest variability with detections ranging from 9.1% to 96.7% across sites. Avian fecal scores exhibited the closest connection to land use, significantly increasing in catchments with larger residential areas after rain events (p = 0.038; R2 = 0.62). Overall, results demonstrate that combining genetic fecal source identification methods with GIS mapping complements routine E. coli monitoring to improve management of urban streams impacted by stormwater outfalls.


Subject(s)
Rivers , Water Pollution , Animals , Dogs , Humans , Environmental Monitoring/methods , Escherichia coli/genetics , Feces , Water Microbiology , Water Pollution/analysis
7.
Water Res ; 225: 119162, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36191524

ABSTRACT

Surface water quality quantitative polymerase chain reaction (qPCR) technologies are expanding from a subject of research to routine environmental and public health laboratory testing. Readily available, reliable reference material is needed to interpret qPCR measurements, particularly across laboratories. Standard Reference Material® 2917 (NIST SRM® 2917) is a DNA plasmid construct that functions with multiple water quality qPCR assays allowing for estimation of total fecal pollution and identification of key fecal sources. This study investigates SRM 2917 interlaboratory performance based on repeated measures of 12 qPCR assays by 14 laboratories (n = 1008 instrument runs). Using a Bayesian approach, single-instrument run data are combined to generate assay-specific global calibration models allowing for characterization of within- and between-lab variability. Comparable data sets generated by two additional laboratories are used to assess new SRM 2917 data acceptance metrics. SRM 2917 allows for reproducible single-instrument run calibration models across laboratories, regardless of qPCR assay. In addition, global models offer multiple data acceptance metric options that future users can employ to minimize variability, improve comparability of data across laboratories, and increase confidence in qPCR measurements.


Subject(s)
Benchmarking , Water Quality , Bayes Theorem , Real-Time Polymerase Chain Reaction , DNA
9.
Water Res ; 212: 118114, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35091220

ABSTRACT

Fecal pollution remains a significant challenge for recreational water quality management worldwide. In response, there is a growing interest in the use of real-time quantitative PCR (qPCR) methods to achieve same-day notification of recreational water quality and associated public health risk as well as to characterize fecal pollution sources for targeted mitigation. However, successful widespread implementation of these technologies requires the development of and access to a high-quality standard control material. Here, we report a single laboratory qPCR performance assessment of the National Institute of Standards and Technology Standard Reference Material 2917 (NIST SRM® 2917), a linearized plasmid DNA construct that functions with 13 recreational water quality qPCR assays. Performance experiments indicate the generation of standard curves with amplification efficiencies ranging from 0.95 ± 0.006 to 0.99 ± 0.008 and coefficient of determination values (R2) ≥ 0.980. Regardless of qPCR assay, variability in repeated measurements at each dilution level were very low (quantification threshold standard deviations ≤ 0.657) and exhibited a heteroscedastic trend characteristic of qPCR standard curves. The influence of a yeast carrier tRNA added to the standard control material buffer was also investigated. Findings demonstrated that NIST SRM® 2917 functions with all qPCR methods and suggests that the future use of this control material by scientists and water quality managers should help reduce variability in concentration estimates and make results more consistent between laboratories.


Subject(s)
Water Microbiology , Water Quality , Environmental Monitoring , Feces , Real-Time Polymerase Chain Reaction , Water Pollution/analysis
10.
Value Health ; 24(4): 556-567, 2021 04.
Article in English | MEDLINE | ID: mdl-33840434

ABSTRACT

OBJECTIVES: Patient-reported outcomes are increasingly recommended to guide patient care, develop and evaluate interventions, and modify health systems. However, not enough is known about whether and how children and adolescents, as "experts" in their own health and quality of life (QoL), are being engaged in the development of instruments. Our goals in this review were (1) to identify all QoL-related instruments that have included children and/or adolescents in the development of questionnaire content, including identification of themes and items; and (2) to report how this was done; and (3) to highlight those that used qualitative methods. METHODS: MEDLINE and Embase were searched for child- or adolescent-completed QoL-related instruments, supplemented by hand-searching of relevant reviews until 2020. Original development papers were identified and retrieved when possible, from which instrument characteristics and details of qualitative development methods were extracted. RESULTS: We identified 445 instruments, of which 88 used qualitative methods for content development. Interviews and focus groups were the most common methods. A variety of play techniques were used to engage the child and adolescent participants. The specific criteria for the inclusion of children and adolescents (age, developmental stage, duration, and nonclinical location) varied considerably. CONCLUSIONS: Researchers frequently involve children and adolescents in qualitative methods when developing QoL-related measures; however, there is little information about the methods used. Better reporting of methodology, improved dissemination of methods guidelines, and research into optimal ways of including children and adolescents in the process of instrument development would be useful.


Subject(s)
Patient Participation/methods , Patient Reported Outcome Measures , Quality of Life , Surveys and Questionnaires/statistics & numerical data , Adolescent , Child , Female , Focus Groups , Humans , Male , Qualitative Research
SELECTION OF CITATIONS
SEARCH DETAIL