Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters











Publication year range
1.
Front Bioeng Biotechnol ; 11: 1250348, 2023.
Article in English | MEDLINE | ID: mdl-38026846

ABSTRACT

Glycocalyx (GCX) is a carbohydrate-rich structure that coats the surface of endothelial cells (ECs) and lines the blood vessel lumen. Mechanical perturbations in the vascular environment, such as blood vessel stiffness, can be transduced and sent to ECs through mechanosensors such as GCX. Adverse stiffness alters GCX-mediated mechanotransduction and leads to EC dysfunction and eventually atherosclerotic cardiovascular diseases. To understand GCX-regulated mechanotransduction events, an in vitro model emulating in vivo vessel conditions is needed. To this end, we investigated the impact of matrix chemical and mechanical properties on GCX expression via fabricating a tunable non-swelling matrix based on the collagen-derived polypeptide, gelatin. To study the effect of matrix composition, we conducted a comparative analysis of GCX expression using different concentrations (60-25,000 µg/mL) of gelatin and gelatin methacrylate (GelMA) in comparison to fibronectin (60 µg/mL), a standard coating material for GCX-related studies. Using immunocytochemistry analysis, we showed for the first time that different substrate compositions and concentrations altered the overall GCX expression on human umbilical vein ECs (HUVECs). Subsequently, GelMA hydrogels were fabricated with stiffnesses of 2.5 and 5 kPa, representing healthy vessel tissues, and 10 kPa, corresponding to diseased vessel tissues. Immunocytochemistry analysis showed that on hydrogels with different levels of stiffness, the GCX expression in HUVECs remained unchanged, while its major polysaccharide components exhibited dysregulation in distinct patterns. For example, there was a significant decrease in heparan sulfate expression on pathological substrates (10 kPa), while sialic acid expression increased with increased matrix stiffness. This study suggests the specific mechanisms through which GCX may influence ECs in modulating barrier function, immune cell adhesion, and mechanotransduction function under distinct chemical and mechanical conditions of both healthy and diseased substrates.

2.
Front Cell Dev Biol ; 11: 1155882, 2023.
Article in English | MEDLINE | ID: mdl-37255596

ABSTRACT

Cell migration plays an essential role in physiological and pathological states, such as immune response, tissue generation and tumor development. This phenomenon can occur spontaneously or it can be triggered by an external stimuli, including biochemical, mechanical, or electrical cues that induce or direct cells to migrate. The migratory response to these cues is foundational to several fields including neuroscience, cancer and regenerative medicine. Various platforms are available to qualitatively and quantitatively measure cell migration, making the measurements of cell motility straight-forward. Migratory behavior must be analyzed by multiple metrics and then models to connect the measurements to physiological meaning. This review will focus on describing and quantifying cell movement for individual cell migration.

3.
Biomacromolecules ; 23(6): 2635-2646, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35656981

ABSTRACT

Peripheral nerve regeneration across large gaps remains clinically challenging and scaffold design plays a key role in nerve tissue engineering. One strategy to encourage regeneration has utilized nanofibers or conduits to exploit contact guidance within the neural regenerative milieu. Herein, we report the effect of nanofiber topography on two key aspects of regeneration: Schwann cell migration and neurite extension. Substrates possessing distinct diameter distributions (300 ± 40 to 900 ± 70 nm) of highly aligned poly(ε-caprolactone) nanofibers were fabricated by touch-spinning. Cell migratory behavior and contact guidance were then evaluated both at the tissue level using dorsal root ganglion tissue explants and the cellular level using dissociated Schwann cells. Explant studies showed that Schwann cells emigrated significantly farther on fibers than control. However, both Schwann cells and neurites emigrated from the tissue explants directionally along the fibers regardless of their diameter, and the data were characterized by high variation. At the cellular level, dissociated Schwann cells demonstrated biased migration in the direction of fiber alignment and exhibited a significantly higher biased velocity (0.2790 ± 0.0959 µm·min-1) on 900 ± 70 nm fibers compared to other nanofiber groups and similar to the velocity found during explant emigration on 900 nm fibers. Therefore, aligned, nanofibrous scaffolds of larger diameters (900 ± 70 nm) may be promising materials to enhance various aspects of nerve regeneration via contact guidance alone. While cells track along with the fibers, this contact guidance is bidirectional along the fiber, moving in the plane of alignment. Therefore, the next critical step to direct regeneration is to uncover haptotactic cues that enhance directed migration.


Subject(s)
Nanofibers , Ganglia, Spinal , Nanofibers/chemistry , Nerve Regeneration , Schwann Cells , Tissue Engineering , Tissue Scaffolds/chemistry , Touch
4.
J Biomed Mater Res A ; 109(10): 1922-1930, 2021 10.
Article in English | MEDLINE | ID: mdl-33822464

ABSTRACT

Cardiac extracellular matrix (cECM) derived hydrogel has been investigated to treat myocardial infarction through animal studies and clinical trials. The tissue harvesting site commonly selects porcine left ventricle (LV) because heart attack majorly takes place in LV. However, little is known about whether the region of cardiac tissue harvesting is critical for downstream applications. In this work, in vitro studies to compare cECM hydrogels derived from adult porcine whole heart (WH), LV, and right ventricle (RV) were performed. The cECM from WH has similar chemical composition compared with cECM from LV and RV. All three types of cECM hydrogels share many similarities in terms of their microstructure, gelation time, and mechanical properties. WH-derived cECM hydrogels have larger variations in storage modulus (G') and complex modulus (G*) compared with the other two types of cECM hydrogels. Both human cardiomyocytes and mesenchymal stem cells could maintain high cell viability on all hydrogels without significant difference. In terms of above results, the cECM hydrogels from WH, LV and RV exhibited similarity in material properties and cell response in vitro. Thus, future fabrication of cECM hydrogels from WH would increase the yield, which would decrease processing time and production cost.


Subject(s)
Extracellular Matrix/chemistry , Hydrogels/pharmacology , Myocardium/chemistry , Animals , Cell Death/drug effects , Cell Shape/drug effects , Cell Survival/drug effects , Elastic Modulus , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Rheology , Swine
5.
Cell ; 184(3): 561-565, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33503447

ABSTRACT

Our nationwide network of BME women faculty collectively argue that racial funding disparity by the National Institutes of Health (NIH) remains the most insidious barrier to success of Black faculty in our profession. We thus refocus attention on this critical barrier and suggest solutions on how it can be dismantled.


Subject(s)
Biomedical Research/economics , Black or African American , Financial Management , Research Personnel/economics , Humans , National Institutes of Health (U.S.)/economics , Racial Groups , United States
6.
Ann Biomed Eng ; 49(2): 858-870, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32974756

ABSTRACT

Glaucoma is a neurodegenerative disease in which the retinal ganglion cell axons of the optic nerve degenerate concomitant with synaptic changes in the retina, leading finally to death of the retinal ganglion cells (RGCs). Electrical stimulation has been used to improve neural regeneration in a variety of systems, including in diseases of the retina. Therefore, the focus of this study was to investigate whether transcorneal electrical stimulation (TES) in the DBA2/J mouse model of glaucoma could improve retinal or optic nerve pathology and serve as a minimally invasive treatment option. Mice (10 months-old) received 21 sessions of TES over 8 weeks, after which we evaluated RGC number, axon number, and anterograde axonal transport using histology and immunohistochemistry. To gain insight into the mechanism of proposed protection, we also evaluated inflammation by quantifying CD3+ T-cells and Iba1+ microglia; perturbations in metabolism were shown via the ratio pAMPK to AMPK, and changes in trophic support were tested using protein capillary electrophoresis. We found that TES resulted in RGC axon protection, a reduction in inflammatory cells and their activation, improved energy homeostasis, and a reduction of the cell death-associated p75NTR. Collectively, the data indicated that TES maintained axons, decreased inflammation, and increased trophic factor support, in the form of receptor presence and energy homeostasis, suggesting that electrical stimulation impacts several facets of the neurodegenerative process in glaucoma.


Subject(s)
Electric Stimulation , Glaucoma/therapy , Neurodegenerative Diseases/therapy , Optic Nerve/physiology , Retina/physiology , Animals , Cornea , Disease Models, Animal , Female , Glaucoma/metabolism , Glaucoma/physiopathology , Inflammation/metabolism , Inflammation/physiopathology , Inflammation/therapy , Male , Mice, Inbred DBA , Microglia , Nerve Regeneration , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Receptors, Nerve Growth Factor/metabolism
7.
Neurotrauma Rep ; 1(1): 181-191, 2020.
Article in English | MEDLINE | ID: mdl-34223540

ABSTRACT

Peripheral nerve injuries, associated with significant morbidity, can benefit from electrical stimulation (ES), as demonstrated in animal studies through improved axonal growth. This study combined the clinical gold standard of isograft repair in a rat model of sciatic nerve injury to evaluate the effects of intraoperative ES on functional tests and histology. Forty rats underwent a surgically induced gap injury to the right sciatic nerve and subsequent repair with an isograft. Half of these rats were randomly selected to receive 10 min of intraoperative ES. Functional testing, including response time to a heat stimulus and motor functional tests, were conducted. Histology of the sciatic nerves and gastrocnemius muscles were analyzed after 6 and 12 weeks of recovery. Rats that underwent ES treatment showed incremental improvements in motor function between weeks 2 and 12, with a significantly higher push-off response than the no-ES controls after 6 weeks. Although no differences were detected between groups in the sensory testing, significant improvements over time were noted in the ES group. Histology parameters, sciatic nerve measures, and gastrocnemius muscle weights demonstrated nerve recovery over time for both the ES and no-ES control groups. Although ES promoted improvements in motor function comparable to that in previous studies, the benefits of intraoperative ES were not detectable in other metrics of this rat model of peripheral nerve injury. Future work is needed to optimize sensory testing in the rodent injury model and compare electrical activity of collagen scaffolds to native tissue to detect differences.

8.
Biomacromolecules ; 20(12): 4494-4501, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31721566

ABSTRACT

Substrates with combinations of topographical and biochemical cues are highly useful for a number of fundamental biological investigations. Tethered molecular concentration gradients in particular are highly desired for a number of biomedical applications including cell migration. Herein, we report a versatile method for the fabrication of aligned nanofiber substrates with a tunable concentration gradient along the fiber direction. 4-Dibenzocyclooctynol (DIBO) was used as an initiator for the ring-opening copolymerization of ε-caprolactone (εCL) and allyl-functionalized ε-caprolactone (AεPCL), which yielded a well-defined polymer with orthogonal functional handles. These materials were fabricated into aligned nanofiber substrates via touch-spinning. Fibers were modified post-spinning with a concentration gradient of fluorescently labeled dye via a light activated thiol-ene reaction through a photomask. As a demonstration, the cell adhesive peptide RGD was chemically tethered to the fiber surface at a second functionalization site via strain-promoted azide-alkyne cycloaddition (SPAAC). This novel approach affords fabrication of dual functional nanofiber substrates.


Subject(s)
Nanofibers/chemistry , Oligopeptides/chemistry , Polyesters/chemistry , Polyesters/chemical synthesis , Cycloaddition Reaction
9.
Biomaterials ; 218: 119335, 2019 10.
Article in English | MEDLINE | ID: mdl-31302351

ABSTRACT

Neuroregeneration following peripheral nerve injury is largely mediated by Schwann cells (SC), the principal glial cell that supports neurons in the peripheral nervous system. Axonal regeneration in vivo is limited by the extent of SC migration into the gap between the proximal and distal nerve, however, little is known regarding the principal driving forces for SC migration. Engineered microenvironments, such as molecular and protein gradients, play a role in the migration of many cell types, including cancer cells and fibroblasts. However, haptotactic strategies have not been applied widely to SC. Herein, a series of tethered laminin-derived peptides were analyzed for their influence on SC adhesion, proliferation, and alignment. Concentration gradient substrates were fabricated using a controlled vapor deposition method, followed by covalent peptide attachment via a thiol-ene reaction, and characterized by X-ray photoelectron spectroscopy (XPS) and MALDI-MS imaging. While tethered RGD peptides supported SC adhesion and proliferation, concentration gradients of RGD had little influence on biased SC directional migration. In contrast, YIGSR promoted less SC attachment than RGD, yet YIGSR peptide gradients directed migration with a strong bias to the concentration profile. With YIGSR peptide, overall speed increased with the steepness of the peptide concentration profile. YIGSR gradients had no haptotactic effect on rat dermal fibroblast migration, in contrast to fibroblast migration on RGD gradients. The response of SC to these tethered peptide gradients will guide the development of translationally relevant constructs designed to facilitate endogenous SC infiltration into defects for nerve regeneration.


Subject(s)
Cell Movement/drug effects , Laminin/chemistry , Peptides/chemistry , Peptides/pharmacology , Schwann Cells/cytology , Schwann Cells/drug effects , Actins/metabolism , Animals , Cell Adhesion/drug effects , Chemotaxis/drug effects , Female , Photoelectron Spectroscopy , Rats, Sprague-Dawley , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
10.
J Funct Biomater ; 10(2)2019 May 29.
Article in English | MEDLINE | ID: mdl-31146396

ABSTRACT

Nerve injuries requiring surgery are a significant problem without good clinical alternatives to the autograft. Tissue engineering strategies are critically needed to provide an alternative. In this study, we utilized aligned nanofibers that were click-modified with the bioactive peptide RGD for rat sciatic nerve repair. Empty conduits or conduits filled with either non-functionalized aligned nanofibers or RGD-functionalized aligned nanofibers were used to repair a 13 mm gap in the rat sciatic nerve of animals for six weeks. The aligned nanofibers encouraged cell infiltration and nerve repair as shown by histological analysis. RGD-functionalized nanofibers reduced muscle atrophy. During the six weeks of recovery, the animals were subjected to motor and sensory tests. Sensory recovery was improved in the RGD-functionalized nanofiber group by week 4, while other groups needed six weeks to show improvement after injury. Thus, the use of functionalized nanofibers provides cues that aid in in vivo nerve repair and should be considered as a future repair strategy.

11.
Biomacromolecules ; 20(3): 1443-1454, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30726667

ABSTRACT

Stem cell differentiation toward a specific lineage is controlled by its microenvironment. Polymer scaffolds have long been investigated to provide microenvironment cues; however, synthetic polymers lack the specific signaling motifs necessary to direct cellular responses on their own. In this study, we fabricated random and aligned poly(ε-caprolactone) nanofiber substrates, surface-functionalized with RGD viastrain-promoted azide-alkyne cycloaddition, that were used to investigate the role of a covalently tethered bioactive peptide (RGD) and nanofiber orientation on neural differentiation of mouse embryonic stem cells. Gene and protein expression showed neural differentiation progression over 14 days, with similar expression on RGD random and aligned nanofibers for neurons and glia over time. The high levels of glial fibrillary acidic protein expression at early time points were indicative of neural progenitors, and occurred earlier than on controls or in previous reports. These results highlight the influence of RGD binding versus topography in differentiation.


Subject(s)
Cell Differentiation , Glial Fibrillary Acidic Protein/metabolism , Mouse Embryonic Stem Cells/cytology , Nanofibers/chemistry , Neurons/cytology , Oligopeptides/chemistry , Animals , Mice , Mouse Embryonic Stem Cells/metabolism
12.
Biomed Mater ; 13(5): 055007, 2018 07 19.
Article in English | MEDLINE | ID: mdl-29869613

ABSTRACT

For improved cell integration, tissue engineering scaffolds must be designed to degrade over time. Typically, the chemistry of scaffolds is modified to alter the degradation profile by using different hydrolytic or enzymatic sites within a material. It is more challenging, however, to fabricate self-assembling, injectable scaffolds that provide tunable degradation. Our laboratory has developed microgel-based scaffolds, where individual micron-sized hydrogels are crosslinked to make larger bulk scaffolds. The size of the individual microgels permits injection, and the microgels then self-assemble into a bulk structure and crosslink. We hypothesized that the microgel-based scaffolds can be used to tune degradability by mixing degradable and non-degradable microgels at various ratios within a self-assembling scaffold. Therefore, two types of microgels were fabricated, those composed of polyethylene glycol (PEG) and those composed of a PEG-lactic acid. Importantly, the microgels were similar in size and swelling and had a low polydispersity index due to their method of fabrication. Microgels were then mixed in four ratios to fabricate scaffolds and study how changes in scaffold composition altered the 3D proliferation and morphology of human dermal fibroblasts. Microgel-based scaffolds formed with 100% degradable microgels lost >60% of their mass over the 14 days of the study. Human dermal fibroblasts were mixed within the 3D scaffolds at the time of assembly and all scaffolds had cells with high viability and typical morphology. The scaffolds that had 25%-50% degradable microgels showed statistically increased proliferation of fibroblasts after 1 and 2 weeks over non-degradable scaffolds and those scaffolds with 75% or 100% degradable microgels. Overall, this work demonstrates the development and use of a tunable, self-assembled, microgel-based scaffold to investigate the effects of degradability on cellular response.


Subject(s)
Fibroblasts/cytology , Gels , Hydrogels/chemistry , Skin/cytology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Absorbable Implants , Cell Proliferation , Cell Survival , Humans , Hydrolysis , Materials Testing , Polyethylene Glycols/chemistry
13.
Acta Biomater ; 75: 129-139, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29879551

ABSTRACT

Substrates for embryonic stem cell culture are typified by poorly defined xenogenic, whole proteins or cellular components that are difficult and expensive to generate, characterize, and recapitulate. Herein, the generation of well-defined scaffolds of Gly-Tyr-Ile-Gly-Ser-Arg (GYIGSR) peptide-functionalized poly(ε-caprolactone) (PCL) aligned nanofibers are used to accelerate the neural lineage commitment and differentiation of D3 mouse embryonic stem cells (mESCs). Gene expression trends and immunocytochemistry analysis were similar to laminin-coated glass, and indicated an earlier differentiation progression than D3 mESCs on laminin. Further, GYIGSR-functionalized nanofiber substrates yielded an increased gene expression of Sox1, a neural progenitor cell marker, and Tubb3, Cdh2, Syp, neuronal cell markers, at early time points. In addition, guidance of neurites was found to parallel the fiber direction. We demonstrate the fabrication of a well-defined, xeno-free functional nanofiber scaffold and demonstrates its use as a surrogate for xenogenic and complex matrixes currently used for the neural differentiation of stem cells ex vivo. STATEMENT OF SIGNIFICANCE: In this paper, we report the use of GYIGSR-functionalized poly(ε-caprolactone) aligned nanofibers as a tool to accelerate the neural lineage commitment and differentiation of D3 mouse embryonic stem cells. The results indicate that functional nanofiber substrates promote faster differentiation than laminin coated substrates. The data suggest that aligned nanofibers and post-electrospinning surface modification with bioactive species can be combined to produce translationally relevant xeno-free substrates for stem cell therapy. Future development efforts are focused on additional bioactive species that are able to function as surrogates for other xenogenic factors found in differentiation media.


Subject(s)
Cell Differentiation , Mouse Embryonic Stem Cells/metabolism , Nanofibers/chemistry , Neurons/metabolism , Peptides/chemistry , Tissue Scaffolds/chemistry , Animals , Antigens, Differentiation/biosynthesis , Cell Line , Gene Expression Regulation , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Neurons/cytology
14.
Biomed Mater ; 13(2): 024102, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29133625

ABSTRACT

Cells are sensitive to physical cues in their environment, such as the stiffness of the substrate, peptide density, and peptide affinity. Understanding how neural stem cells (NSCs) sense and respond to these matrix cues has the potential to improve disease outcome, particularly if a regenerative response can be exploited. While the material properties are known to influence other stem cells, little is known about how NSC differentiation is altered by this interplay of mechanical, or bulk properties, with peptide concentration and affinity, or microscale properties. We are interested in the combined effect of bulk and microscale features in an in vitro hydrogel model and therefore we investigated NSC differentiation by focusing on integrin interactions via RGD peptide affinity and concentration. Our studies demonstrated that the peptide concentration affected adhesion as there were more cells on scaffolds with 1 mM RGD than 2.5 mM RGD. The hydrogel stiffness affected neurite length in differentiating NSCs, as 0.1-0.8 kPa substrates promoted greater neurite extension than 4.2-7.9 kPa substrates. The NSCs differentiated towards ß-ΙΙΙ tubulin positive cells on scaffolds with RGD after 7 days and those scaffolds containing 1 mM linear or cyclic RGD had longer neurite extensions than scaffolds containing 0.1 or 2.5 mM RGD. While peptide affinity had a lesser effect on the NSC response in our hydrogel system, blocking actin, myosin II, or integrin interactions resulted in changes to the cell morphology and focal adhesion assembly. Overall, these results demonstrated NSCs are more responsive to a change in tissue stiffness than peptide affinity in the range of gels tested, which may influence design of materials for neural tissue engineering.


Subject(s)
Cell Differentiation , Neural Stem Cells/cytology , Oligopeptides/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Adhesion , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Hydrogels/chemistry , Induced Pluripotent Stem Cells/cytology , Neurites/metabolism , Peptides/chemistry , Protein Binding
15.
Ann Biomed Eng ; 45(9): 2049-2060, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28488217

ABSTRACT

Exogenous electrical stimulation (ES) has been investigated as a therapy for chronic wounds, as the skin produces currents and electrical fields (EFs) during wound healing. ES therapies operate by applying small EFs to the skin to mimic the transepithelial potentials that occur during the granulation phase of wound healing. Here, we investigated the effect of short duration (10 min) ES on the migration of HDFs using various magnitudes of physiologically relevant EFs. We modeled cutaneous injury by culturing HDFs in custom chambers that allowed the application of ES and then performed timelapse microscopy on a standard wound model. Using MATLAB to process cell coordinate data, we determined that the cells were migrating randomly and fit mean squared displacement data to the persistent random walk equation using nonlinear least squares regression analysis. Results indicated that application of 25-100 mV/mm DC EFs to HDFs on either uncoated or FN-coated surfaces demonstrated no significant changes in viability or proliferation. Of significance is that the HDFs increased random migration behavior under some ES conditions even after 10 min, providing a mechanism to enhance wound healing.


Subject(s)
Cell Movement , Fibroblasts/metabolism , Electric Stimulation , Fibroblasts/cytology , Humans
16.
PLoS One ; 12(4): e0175550, 2017.
Article in English | MEDLINE | ID: mdl-28406999

ABSTRACT

Current research in prosthetic device design aims to mimic natural movements using a feedback system that connects to the patient's own nerves to control the device. The first step in using neurons to control motion is to make and maintain contact between neurons and the feedback sensors. Therefore, the goal of this project was to determine if changes in electrode resistance could be detected when a neuron extended a neurite to contact a sensor. Dorsal root ganglia (DRG) were harvested from chick embryos and cultured on a collagen-coated carbon nanotube microelectrode array for two days. The DRG were seeded along one side of the array so the processes extended across the array, contacting about half of the electrodes. Electrode resistance was measured both prior to culture and after the two day culture period. Phase contrast images of the microelectrode array were taken after two days to visually determine which electrodes were in contact with one or more DRG neurite or tissue. Electrodes in contact with DRG neurites had an average change in resistance of 0.15 MΩ compared with the electrodes without DRG neurites. Using this method, we determined that resistance values can be used as a criterion for identifying electrodes in contact with a DRG neurite. These data are the foundation for future development of an autonomous feedback resistance measurement system to continuously monitor DRG neurite outgrowth at specific spatial locations.


Subject(s)
Cell Culture Techniques/instrumentation , Ganglia, Spinal/cytology , Neurites/physiology , Animals , Cell Culture Techniques/methods , Cells, Cultured , Chick Embryo , Electric Impedance , Ganglia, Spinal/embryology , Microelectrodes , Neuronal Outgrowth
18.
Macromol Biosci ; 16(4): 535-44, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26726886

ABSTRACT

2D in vitro studies have demonstrated that Schwann cells prefer scaffolds with mechanical modulus approximately 10× higher than the modulus preferred by nerves, limiting the ability of many scaffolds to promote both neuron extension and Schwann cell proliferation. Therefore, the goals of this work are to develop and characterize microgel-based scaffolds that are tuned over the stiffness range relevant to neural tissue engineering and investigate Schwann cell morphology, viability, and proliferation within 3D scaffolds. Using thiol-ene reaction, microgels with surface thiols are produced and crosslinked into hydrogels using a multiarm vinylsulfone (VS). By varying the concentration of VS, scaffold stiffness ranges from 0.13 to 0.76 kPa. Cell morphology in all groups demonstrates that cells are able to spread and interact with the scaffold through day 5. Although the viability in all groups is high, proliferation of Schwann cells within the scaffold of G* = 0.53 kPa is significantly higher than other groups. This result is ≈ 5× lower than previously reported optimal stiffnesses on 2D surfaces, demonstrating the need for correlation of 3D cell response to mechanical modulus. As proliferation is the first step in Schwann cell integration into peripheral nerve conduits, these scaffolds demonstrate that the stiffness is a critical parameter to optimizing the regenerative process.


Subject(s)
Cell Proliferation/drug effects , Collagen/chemistry , Polyethylene Glycols/chemical synthesis , Schwann Cells/drug effects , Sulfhydryl Compounds/chemistry , Tissue Engineering/methods , Animals , Cell Survival/drug effects , Cross-Linking Reagents/chemistry , Elastic Modulus , Gels , Polyethylene Glycols/pharmacology , Primary Cell Culture , Rats , Schwann Cells/cytology , Schwann Cells/physiology , Sciatic Nerve/cytology , Sciatic Nerve/drug effects , Sciatic Nerve/physiology , Shear Strength , Sulfones/chemistry , Tissue Scaffolds
19.
IEEE Trans Biomed Eng ; 63(6): 1257-68, 2016 06.
Article in English | MEDLINE | ID: mdl-26513772

ABSTRACT

OBJECTIVE: To improve peripheral nerve repair, new techniques to increase the speed of regeneration are required. Studies have shown that the electrical stimulation can enhance nerve regeneration; however, stimulation parameters that regulate the growth increases are unknown. The objective of this study was to examine dorsal root ganglion (DRG) neurite extension, directionality, and density after using methods to specifically control ac electrical field intensity and frequency exposure. METHODS: Chick DRG explants were exposed to 20-Hz, 200-Hz, 1-MHz, and 20-MHz sinusoidal electric field of 17.86 V/m, and tissue parameters were measured. RESULTS: Results show that neurite extension and directionality were influenced by frequency; however, the ratio of support cell emigration with respect to neurite extension from the DRG body was not. These results were further verified through finite-element modeling of intracellular calcium, which show that higher frequencies have minimal effect on intracellular calcium. CONCLUSION: In conclusion, these results demonstrate that 1) directional growth of neurites within EFs can be achieved, 2) high-frequency stimulation in megahertz does not enhance or impair the neurite growth, and 3) low-frequency stimulation affects the growth and directionality. SIGNIFICANCE: The significance of this study is the direct comparison of neurite extension after high stimulation frequencies (megahertz) with typical low-frequency fields (20 and 200 Hz), and modeling the results with finite-element modeling.


Subject(s)
Electric Stimulation , Ganglia, Spinal/growth & development , Ganglia, Spinal/radiation effects , Neurites/radiation effects , Animals , Chick Embryo , Chickens , Finite Element Analysis , Image Processing, Computer-Assisted , Microscopy, Fluorescence , Nerve Regeneration/radiation effects , Tissue Culture Techniques
20.
J Neurophysiol ; 115(1): 602-16, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26510759

ABSTRACT

In many instances of extensive nerve damage, the injured nerve never adequately heals, leaving lack of nerve function. Electrical stimulation (ES) has been shown to increase the rate and orient the direction of neurite growth, and is a promising therapy. However, the mechanism in which ES affects neuronal growth is not understood, making it difficult to compare existing ES protocols or to design and optimize new protocols. We hypothesize that ES acts by elevating intracellular calcium concentration ([Ca(2+)]i) via opening voltage-dependent Ca(2+) channels (VDCCs). In this work, we have created a computer model to estimate the ES Ca(2+) relationship. Using COMSOL Multiphysics, we modeled a small dorsal root ganglion (DRG) neuron that includes one Na(+) channel, two K(+) channels, and three VDCCs to estimate [Ca(2+)]i in the soma and growth cone. As expected, the results show that an ES that generates action potentials (APs) can efficiently raise the [Ca(2+)]i of neurons. More interestingly, our simulation results show that sub-AP ES can efficiently raise neuronal [Ca(2+)]i and that specific high-voltage ES can preferentially raise [Ca(2+)]i in the growth cone. The intensities and durations of ES on modeled growth cone calcium rise are consistent with directionality and orientation of growth cones experimentally shown by others. Finally, this model provides a basis to design experimental ES pulse parameters, including duration, intensity, pulse-train frequency, and pulse-train duration to efficiently raise [Ca(2+)]i in neuronal somas or growth cones.


Subject(s)
Calcium Channels/physiology , Calcium/metabolism , Electric Stimulation/methods , Ganglia, Spinal/physiology , Growth Cones/physiology , Models, Neurological , Action Potentials , Animals , Computer Simulation , Ganglia, Spinal/metabolism , Growth Cones/metabolism , Humans , Membrane Potentials , Neurons/metabolism , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL