Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 12(1): 2393, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165364

ABSTRACT

The HSP90/CDC37 chaperone system not only assists the maturation of many protein kinases but also maintains their structural integrity after folding. The interaction of mature kinases with the HSP90/CDC37 complex is governed by the conformational stability of the catalytic domain, while the initial folding of the protein kinase domain is mechanistically less well characterized. DYRK1A (Dual-specificity tyrosine (Y)-phosphorylation Regulated protein Kinase 1A) and DYRK1B are closely related protein kinases with discordant HSP90 client status. DYRK kinases stoichiometrically autophosphorylate on a tyrosine residue immediately after folding, which served us as a traceable marker of successful maturation. In the present study, we used bacterial expression systems to compare the capacity of autonomous maturation of DYRK1A and DYRK1B in the absence of eukaryotic cofactors or chaperones. Under these conditions, autophosphorylation of human DYRK1B was severely compromised when compared with DYRK1A or DYRK1B orthologs from zebrafish and Xenopus. Maturation of human DYRK1B could be restored by bacterial expression at lower temperatures, suggesting that folding was not absolutely dependent on eukaryotic chaperones. The differential folding properties of DYRK1A and DYRK1B were largely due to divergent sequences of the C-terminal lobes of the catalytic domain. Furthermore, the mature kinase domain of DYRK1B featured lower thermal stability than that of DYRK1A when exposed to heat challenge in vitro or in living cells. In summary, our study enhances the mechanistic understanding of the differential thermodynamic properties of two closely related protein kinases during initial folding and as mature kinases.


Subject(s)
Cell Cycle Proteins/metabolism , Chaperonins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Animals , Catalytic Domain , Cell Cycle Proteins/genetics , Chaperonins/genetics , HSP90 Heat-Shock Proteins/genetics , Humans , Phosphorylation , Protein Domains , Protein Folding , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Xenopus/genetics , Xenopus/metabolism , Xenopus Proteins/chemistry , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Dyrk Kinases
2.
Eur J Med Chem ; 227: 113911, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34710745

ABSTRACT

A role of Dyrk1A in the progression of Down syndrome-related Alzheimer's disease (AD) is well supported. However, the involvement of Dyrk1A in the pathogenesis of Parkinson's disease (PD) was much less studied, and it is not clear whether it would be promising to test Dyrk1A inhibitors in relevant PD models. Herein, we modified our previously published 1-(6-hydroxybenzo[d]thiazol-2-yl)-3-phenylurea scaffold of Dyrk1A inhibitors to obtain a new series of analogues with higher selectivity for Dyrk1A on the one hand, but also with a novel, additional activity as inhibitors of α-synuclein (α-syn) aggregation, a major pathogenic hallmark of PD. The phenyl acetamide derivative b27 displayed the highest potency against Dyrk1A with an IC50 of 20 nM and high selectivity over closely related kinases. Furthermore, b27 was shown to successfully target intracellular Dyrk1A and to inhibit SF3B1 phosphorylation in HeLa cells with an IC50 of 690 nM. In addition, two compounds among the Dyrk1A inhibitors, b1 and b20, also suppressed the aggregation of α-synuclein (α-syn) oligomers (with IC50 values of 10.5 µM and 7.8 µM, respectively). Both compounds but not the Dyrk1A reference inhibitor harmine protected SH-SY5Y neuroblastoma cells against α-syn-induced cytotoxicity, with b20 exhibiting a higher neuroprotective effect. Compound b1 and harmine were more efficient in protecting SH-SY5Y cells against 6-hydroxydopamine-induced cell death, an effect that was previously correlated to Dyrk1A inactivation in cells but not yet verified using chemical inhibitors. The presented dual inhibitors exhibited a novel activity profile encouraging for further testing in neurodegenerative disease models.


Subject(s)
Drug Discovery , Neuroprotective Agents/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Thiazoles/pharmacology , Urea/pharmacology , alpha-Synuclein/antagonists & inhibitors , Cell Survival/drug effects , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Protein Aggregates/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , Urea/analogs & derivatives , Urea/chemistry , alpha-Synuclein/metabolism , Dyrk Kinases
3.
ACS Chem Neurosci ; 12(22): 4302-4318, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34726394

ABSTRACT

Multiple factors are causally responsible and/or contribute to the progression of Alzheimer's and Parkinson's diseases. The protein kinase Dyrk1A was identified as a promising target as it phosphorylates tau protein, α-synuclein, and parkin. The first goal of our study was to optimize our previously identified Dyrk1A inhibitors of the 6-hydroxy benzothiazole urea chemotype in terms of potency and selectivity. Our efforts led to the development of the 3-fluorobenzyl amide derivative 16b, which displayed the highest potency against Dyrk1A (IC50 = 9.4 nM). In general, the diversification of the benzylamide moiety led to an enhanced selectivity over the most homologous isoform, Dyrk1B, which was a meaningful indicator, as the high selectivity could be confirmed in an extended selectivity profiling of 3b and 16b. Eventually, we identified the novel phenethyl amide derivative 24b as a triple inhibitor of Dyrk1A kinase activity (IC50 = 119 nM) and the aggregation of tau and α-syn oligomers. We provide evidence that the novel combination of selective Dyrk1A inhibition and suppression of tau and α-syn aggregations of our new lead compound confers efficacy in several established cellular models of neurotoxic mechanisms relevant to neurodegenerative diseases, including α-syn- and 6-hydroxydopamine-induced cytotoxicities.


Subject(s)
Neurodegenerative Diseases , Protein-Tyrosine Kinases , Humans , Neurodegenerative Diseases/drug therapy , Protein Serine-Threonine Kinases , Urea/pharmacology , alpha-Synuclein , tau Proteins
4.
Front Cell Infect Microbiol ; 11: 685657, 2021.
Article in English | MEDLINE | ID: mdl-34422679

ABSTRACT

Viridans streptococci are a group of α-hemolytic streptococcal species. They are mainly commensals, most abundant in the mouth supporting oral health. But they also include important human pathogens such as Streptococcus pneumoniae. Identification and molecular typing of viridans group streptococci are challenging, especially for members of the salivarius group. In this study, we developed a single-locus molecular typing method that is able to differentiate among the highly phylogenetically related members of the salivarius group (S. salivarius, S. vestibularis and S. thermophilus) and might support differentiation in other groups as well. This typing approach is based on the amplification and sequence analysis of the housekeeping gene dephospho-coenzyme A kinase (coaE), a gene with unrecognized taxonomic potential to date. Here, we analysed coaE gene sequences of 154 publicly available genomes and of 30 salivarius group isolates of our own collection that together belong to 20 different gram-positive bacterial (sub) species. Our results revealed that the coaE phylogeny distinguished between streptococcal and non-streptococcal genomes and that coaE gene sequences were species-specific. In contrast to MALDI-TOF MS performance, the coaE typing was able to precisely identify the phylogenetically very closely related members of the salivarius group.


Subject(s)
Streptococcus pneumoniae , Streptococcus pyogenes , Humans , Phosphotransferases (Alcohol Group Acceptor) , Phylogeny , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL