Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 120(11): 3261-3275, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37497592

ABSTRACT

Robotic facilities that can perform advanced cultivations (e.g., fed-batch or continuous) in high throughput have drastically increased the speed and reliability of the bioprocess development pipeline. Still, developing reliable analytical technologies, that can cope with the throughput of the cultivation system, has proven to be very challenging. On the one hand, the analytical accuracy suffers from the low sampling volumes, and on the other hand, the number of samples that must be treated rapidly is very large. These issues have been a major limitation for the implementation of feedback control methods in miniaturized bioreactor systems, where observations of the process states are typically obtained after the experiment has finished. In this work, we implement a Sigma-Point Kalman Filter in a high throughput platform with 24 parallel experiments at the mL-scale to demonstrate its viability and added value in high throughput experiments. The filter exploits the information generated by the ammonia-based pH control to enable the continuous estimation of the biomass concentration, a critical state to monitor the specific rates of production and consumption in the process. The objective in the selected case study is to ensure that the selected specific substrate consumption rate is tightly controlled throughout the complete Escherichia coli cultivations for recombinant production of an antibody fragment.

2.
Eng Life Sci ; 17(11): 1195-1201, 2017 Nov.
Article in English | MEDLINE | ID: mdl-32624747

ABSTRACT

Bioprocess development, optimization, and control in mini-bioreactor systems require information about essential process parameters, high data densities, and the ability to dynamically change process conditions. We present an integration approach combining a parallel mini-bioreactor system integrated into a liquid handling station (LHS) with a second LHS for offline analytics. Non-invasive sensors measure pH and DO online. Offline samples are collected every 20 min and acetate, glucose, and OD620 subsequently analyzed offline. All data are automatically collected, analyzed, formalized, and used for process control and optimization. Fed-batch conditions are realized via a slow enzymatic glucose release system. The integration approach was successfully used to apply an online experimental re-design method to eight Escherichia coli fed-batch cultivations. The method utilizes generated data to select the following experimental actions online in order to reach the optimization goal of estimating E. coli fed-batch model parameters with as high accuracy as possible. Optimal experimental designs were re-calculated online based on the experimental data and implemented by introducing pulses via the LHS to the running fermentations. The LHS control allows for various implementations of advanced control and optimization strategies in milliliter scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...