Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 300
Filter
1.
Adv Healthc Mater ; : e2304618, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700450

ABSTRACT

The tumor uptake of large non-targeted nanocarriers primarily occurs through passive extravasation, known as the enhanced permeability and retention (EPR) effect. Prior studies demonstrated improved tumor uptake and retention of 4-arm 40 kDa star polyethylene glycol (StarPEG) polymers for cancer imaging by adding prostate-specific membrane antigen (PSMA) targeting small molecule ligands. To test PSMA-targeted delivery and therapeutic efficacy, StarPEG nanodrugs with/without three copies of PSMA-targeting ligands, ACUPA, are designed and synthesized. For single-photon emission computed tomography (SPECT) imaging and therapy, each nanocarrier is labeled with 177Lu using DOTA radiometal chelator. The radiolabeled nanodrugs, [177Lu]PEG-(DOTA)1 and [177Lu]PEG-(DOTA)1(ACUPA)3, are evaluated in vitro and in vivo using PSMA+ PC3-Pip and/or PSMA- PC3-Flu cell lines, subcutaneous xenografts and disseminated metastatic models. The nanocarriers are efficiently radiolabeled with 177Lu with molar activities 10.8-15.8 MBq/nmol. Besides excellent in vitro PSMA binding affinity (kD = 51.7 nM), the targeted nanocarrier, [177Lu]PEG-(DOTA)1(ACUPA)3, demonstrated excellent in vivo SPECT imaging contrast with 21.3% ID/g PC3-Pip tumors uptake at 192 h. Single doses of 18.5 MBq [177Lu]PEG-(DOTA)1(ACUPA)3 showed complete resolution of the PC3-Pip xenografts observed up to 138 days. Along with PSMA-targeted excellent imaging contrast, these results demonstrated high treatment efficacy of [177Lu]PEG-(DOTA)1(ACUPA)3 for prostate cancer, with potential for clinical translation.

2.
JACS Au ; 4(3): 1039-1047, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38559735

ABSTRACT

Imaging is increasingly used to detect and monitor bacterial infection. Both anatomic (X-rays, computed tomography, ultrasound, and MRI) and nuclear medicine ([111In]-WBC SPECT, [18F]FDG PET) techniques are used in clinical practice but lack specificity for the causative microorganisms themselves. To meet this challenge, many groups have developed imaging methods that target pathogen-specific metabolism, including PET tracers integrated into the bacterial cell wall. We have previously reported the d-amino acid derived PET radiotracers d-methyl-[11C]-methionine, d-[3-11C]-alanine, and d-[3-11C]-alanine-d-alanine, which showed robust bacterial accumulation in vitro and in vivo. Given the clinical importance of radionuclide half-life, in the current study, we developed [18F]3,3,3-trifluoro-d-alanine (d-[18F]-CF3-ala), a fluorine-18 labeled tracer. We tested the hypothesis that d-[18F]-CF3-ala would be incorporated into bacterial peptidoglycan given its structural similarity to d-alanine itself. NMR analysis showed that the fluorine-19 parent amino acid d-[19F]-CF3-ala was stable in human and mouse serum. d-[19F]-CF3-ala was also a poor substrate for d-amino acid oxidase, the enzyme largely responsible for mammalian d-amino acid metabolism and a likely contributor to background signals using d-amino acid derived PET tracers. In addition, d-[19F]-CF3-ala showed robust incorporation into Escherichia coli peptidoglycan, as detected by HPLC/mass spectrometry. Based on these promising results, we developed a radiosynthesis of d-[18F]-CF3-ala via displacement of a bromo-precursor with [18F]fluoride followed by chiral stationary phase HPLC. Unexpectedly, the accumulation of d-[18F]-CF3-ala by bacteria in vitro was highest for Gram-negative pathogens in particular E. coli. In a murine model of acute bacterial infection, d-[18F]-CF3-ala could distinguish live from heat-killed E. coli, with low background signals. These results indicate the viability of [18F]-modified d-amino acids for infection imaging and indicate that improved specificity for bacterial metabolism can improve tracer performance.

3.
DNA Repair (Amst) ; 139: 103678, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38669748

ABSTRACT

Alzheimer disease (AD) is the most prominent form of dementia and has received considerable attention due to its growing burden on economic, healthcare and basic societal infrastructures. The two major neuropathological hallmarks of AD, i.e., extracellular amyloid beta (Aß) peptide plaques and intracellular hyperphosphorylated Tau neurofibrillary tangles, have been the focus of much research, with an eye on understanding underlying disease mechanisms and identifying novel therapeutic avenues. One often overlooked aspect of AD is how Aß and Tau may, through indirect and direct mechanisms, affect genome integrity. Herein, we review evidence that Aß and Tau abnormalities induce excessive genomic stress and impair genome maintenance mechanisms, events that can promote DNA damage-induced neuronal cell loss and associated brain atrophy.

4.
Bioconjug Chem ; 35(4): 517-527, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38482815

ABSTRACT

Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemical determinants of this incorporation are not fully understood, we sought a high-throughput method to label d-amino acid derived structures with fluorine-18. Our strategy employed a chemical biology approach, whereby an azide (-N3) bearing d-amino acid is incorporated into peptidoglycan muropeptides, with subsequent "click" cycloaddition with an 18F-labeled strained cyclooctyne partner. Procedures: A water-soluble, 18F-labeled and dibenzocyclooctyne (DBCO)-derived radiotracer ([18F]FB-sulfo-DBCO) was synthesized. This tracer was incubated with pathogenic bacteria treated with azide-bearing d-amino acids, and incorporated 18F was determined via gamma counting. In vitro uptake in bacteria previously treated with azide-modified d-amino acids was compared to that in cultures treated with amino acid controls. The biodistribution of [18F]FB-sulfo-DBCO was studied in a cohort of healthy mice with implications for future in vivo imaging. Results: The new strain-promoted azide-alkyne cycloaddition (SPAAC) radiotracer [18F]FB-sulfo-DBCO was synthesized with high radiochemical yield and purity via N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). Accumulation of [18F]FB-sulfo-DBCO was significantly higher in several bacteria treated with azide-modified d-amino acids than in controls; for example, we observed 7 times greater [18F]FB-sulfo-DBCO ligation in Staphylococcus aureus cultures incubated with 3-azido-d-alanine versus those incubated with d-alanine. Conclusions: The SPAAC radiotracer [18F]FB-sulfo-DBCO was validated in vitro via metabolic labeling of azide-bearing peptidoglycan muropeptides. d-Amino acid-derived PET radiotracers may be more efficiently screened via [18F]FB-sulfo-DBCO modification.


Subject(s)
Azides , Peptidoglycan , Humans , Animals , Mice , Azides/chemistry , Tissue Distribution , Positron-Emission Tomography , Bacteria , Amino Acids , Alanine , Fluorine Radioisotopes/chemistry
5.
Theranostics ; 14(4): 1344-1360, 2024.
Article in English | MEDLINE | ID: mdl-38389832

ABSTRACT

Rationale: 225Ac, a long-lived α-emitter with a half-life of 9.92 days, has garnered significant attention as a therapeutic radionuclide when coupled with monoclonal antibodies and other targeting vectors. Nevertheless, its clinical utility has been hampered by potential off-target toxicity, a lack of optimized chelators for 225Ac, and limitations in radiolabeling methods. In a prior study evaluating the effectiveness of CD46-targeted radioimmunotherapy, we found great therapeutic efficacy but also significant toxicity at higher doses. To address these challenges, we have developed a radioimmunoconjugate called 225Ac-Macropa-PEG4-YS5, incorporating a stable PEGylated linker to maximize tumoral uptake and increase tumor-to-background ratios. Our research demonstrates that this conjugate exhibits greater anti-tumor efficacy while minimizing toxicity in prostate cancer 22Rv1 tumors. Methods: We synthesized Macropa.NCS and Macropa-PEG4/8-TFP esters and prepared Macropa-PEG0/4/8-YS5 (with nearly ~1:1 ratio of macropa chelator to antibody YS5) as well as DOTA-YS5 conjugates. These conjugates were then radiolabeled with 225Ac in a 2 M NH4OAc solution at 30 °C, followed by purification using YM30K centrifugal purification. Subsequently, we conducted biodistribution studies and evaluated antitumor activity in nude mice (nu/nu) bearing prostate 22Rv1 xenografts in both single-dose and fractionated dosing studies. Micro-PET imaging studies were performed with 134Ce-Macropa-PEG0/4/8-YS5 in 22Rv1 xenografts for 7 days. Toxicity studies were also performed in healthy athymic nude mice. Results: As expected, we achieved a >95% radiochemical yield when labeling Macropa-PEG0/4/8-YS5 with 225Ac, regardless of the chelator ratios (ranging from 1 to 7.76 per YS5 antibody). The isolated yield exceeded 60% after purification. Such high conversions were not observed with the DOTA-YS5 conjugate, even at a higher ratio of 8.5 chelators per antibody (RCY of 83%, an isolated yield of 40%). Biodistribution analysis at 7 days post-injection revealed higher tumor uptake for the 225Ac-Macropa-PEG4-YS5 (82.82 ± 38.27 %ID/g) compared to other conjugates, namely 225Ac-Macropa-PEG0/8-YS5 (38.2 ± 14.4/36.39 ± 12.4 %ID/g) and 225Ac-DOTA-YS5 (29.35 ± 7.76 %ID/g). The PET Imaging of 134Ce-Macropa-PEG0/4/8-YS5 conjugates resulted in a high tumor uptake, and tumor to background ratios. In terms of antitumor activity, 225Ac-Macropa-PEG4-YS5 exhibited a substantial response, leading to prolonged survival compared to 225Ac-DOTA-YS5, particularly when administered at 4.625 kBq doses, in single or fractionated dose regimens. Chronic toxicity studies observed mild to moderate renal toxicity at 4.625 and 9.25 kBq doses. Conclusions: Our study highlights the promise of 225Ac-Macropa-PEG4-YS5 for targeted alpha particle therapy. The 225Ac-Macropa-PEG4-YS5 conjugate demonstrates improved biodistribution, reduced off-target binding, and enhanced therapeutic efficacy, particularly at lower doses, compared to 225Ac-DOTA-YS5. Incorporating theranostic 134Ce PET imaging further enhances the versatility of macropa-PEG conjugates, offering a more effective and safer approach to cancer treatment. Overall, this methodology has a high potential for broader clinical applications.


Subject(s)
Precision Medicine , Prostatic Neoplasms , Male , Mice , Animals , Humans , Mice, Nude , Tissue Distribution , Radiopharmaceuticals , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/radiotherapy , Chelating Agents , Membrane Cofactor Protein
6.
Aging Cell ; 23(1): e14034, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38038340

ABSTRACT

Geroscience poses that core biological mechanisms of aging contribute to chronic diseases and disabilities in late life and that health span and longevity can be modulated by pharmacological and behavioral interventions. Despite strong evidence from studies in model organisms and great potentials for translation, most geriatricians remain skeptical that geroscience will help them in the day-by-day battle with the consequences of aging in their patients. We believe that a closer collaboration between gerontologists and geriatricians is the key to overcome this impasse. There is evidence that trajectories of health with aging are rooted in intrinsic and extrinsic exposures that occur early in life and affect the pace of molecular and cellular damage accumulation with aging, also referred to as the "pace" of biological aging. Tools that measure the pace of aging currently allow for the identification of individuals experiencing accelerated aging and at higher risk of multimorbidity and disability. What we term "Translational Geroscience", i.e., the merger of fundamental and translational science with clinical practice, is thus poised to extend the action of geriatric care to a life course perspective. By targeting core mechanisms of aging, gerotherapeutics should be effective in treating patients with multimorbidity and disability, phenotypes that are all too common among geriatric patients nowadays. We call for initiatives that enhance the flow of ideas between gerontologists and geriatricians to facilitate the growth of translational geroscience. This approach can widen the scope of geriatric care, including a new role for geroscience in the promotion and operationalization of healthy longevity.


Subject(s)
Geriatrics , Humans , Aged , Geroscience , Aging , Longevity , Health Status
7.
Clin Cancer Res ; 30(5): 1009-1021, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38109209

ABSTRACT

PURPOSE: Multiple myeloma is a plasma cell malignancy with an unmet clinical need for improved imaging methods and therapeutics. Recently, we identified CD46 as an overexpressed therapeutic target in multiple myeloma and developed the antibody YS5, which targets a cancer-specific epitope on this protein. We further developed the CD46-targeting PET probe [89Zr]Zr-DFO-YS5 for imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of prostate cancer. These prior studies suggested the feasibility of the CD46 antigen as a theranostic target in multiple myeloma. Herein, we validate [89Zr]Zr-DFO-YS5 for immunoPET imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of multiple myeloma in murine models. EXPERIMENTAL DESIGN: In vitro saturation binding was performed using the CD46 expressing MM.1S multiple myeloma cell line. ImmunoPET imaging using [89Zr]Zr-DFO-YS5 was performed in immunodeficient (NSG) mice bearing subcutaneous and systemic multiple myeloma xenografts. For radioligand therapy, [225Ac]Ac-DOTA-YS5 was prepared, and both dose escalation and fractionated dose treatment studies were performed in mice bearing MM1.S-Luc systemic xenografts. Tumor burden was analyzed using BLI, and body weight and overall survival were recorded to assess antitumor effect and toxicity. RESULTS: [89Zr]Zr-DFO-YS5 demonstrated high affinity for CD46 expressing MM.1S multiple myeloma cells (Kd = 16.3 nmol/L). In vitro assays in multiple myeloma cell lines demonstrated high binding, and bioinformatics analysis of human multiple myeloma samples revealed high CD46 expression. [89Zr]Zr-DFO-YS5 PET/CT specifically detected multiple myeloma lesions in a variety of models, with low uptake in controls, including CD46 knockout (KO) mice or multiple myeloma mice using a nontargeted antibody. In the MM.1S systemic model, localization of uptake on PET imaging correlated well with the luciferase expression from tumor cells. A treatment study using [225Ac]Ac-DOTA-YS5 in the MM.1S systemic model demonstrated a clear tumor volume and survival benefit in the treated groups. CONCLUSIONS: Our study showed that the CD46-targeted probe [89Zr]Zr-DFO-YS5 can successfully image CD46-expressing multiple myeloma xenografts in murine models, and [225Ac]Ac-DOTA-YS5 can effectively inhibit the growth of multiple myeloma. These results demonstrate that CD46 is a promising theranostic target for multiple myeloma, with the potential for clinical translation.


Subject(s)
Multiple Myeloma , Male , Humans , Animals , Mice , Multiple Myeloma/diagnostic imaging , Multiple Myeloma/drug therapy , Precision Medicine , Actinium , Radioisotopes , Radiopharmaceuticals , Zirconium , Cell Line, Tumor , Positron Emission Tomography Computed Tomography , Antibodies , Membrane Cofactor Protein
8.
Int J Mol Sci ; 24(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38068959

ABSTRACT

The ability to quickly discover reliable hits from screening and rapidly convert them into lead compounds, which can be verified in functional assays, is central to drug discovery. The expedited validation of novel targets and the identification of modulators to advance to preclinical studies can significantly increase drug development success. Our SaXPyTM ("SAR by X-ray Poses Quickly") platform, which is applicable to any X-ray crystallography-enabled drug target, couples the established methods of protein X-ray crystallography and fragment-based drug discovery (FBDD) with advanced computational and medicinal chemistry to deliver small molecule modulators or targeted protein degradation ligands in a short timeframe. Our approach, especially for elusive or "undruggable" targets, allows for (i) hit generation; (ii) the mapping of protein-ligand interactions; (iii) the assessment of target ligandability; (iv) the discovery of novel and potential allosteric binding sites; and (v) hit-to-lead execution. These advances inform chemical tractability and downstream biology and generate novel intellectual property. We describe here the application of SaXPy in the discovery and development of DNA damage response inhibitors against DNA polymerase eta (Pol η or POLH) and apurinic/apyrimidinic endonuclease 1 (APE1 or APEX1). Notably, our SaXPy platform allowed us to solve the first crystal structures of these proteins bound to small molecules and to discover novel binding sites for each target.


Subject(s)
DNA-Directed DNA Polymerase , Drug Discovery , DNA-Directed DNA Polymerase/metabolism , Binding Sites , Endonucleases/metabolism , Crystallography, X-Ray , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism
9.
Article in English | MEDLINE | ID: mdl-38052484

ABSTRACT

Aging can be conceptualized as the progressive disequilibrium between stochastic damage accumulation and resilience mechanisms that continuously repair that damage, which eventually cause the development of chronic disease, frailty, and death. The immune system is at the forefront of these resilience mechanisms. Indeed, aging is associated with persistent activation of the immune system, witnessed by a high circulating level of inflammatory markers and activation of immune cells in the circulation and in tissue, a condition called "inflammaging." Like aging, inflammaging is associated with increased risk of many age-related pathologies and disabilities, as well as frailty and death. Herein we discuss recent advances in the understanding of the mechanisms leading to inflammaging and the intrinsic dysregulation of the immune function that occurs with aging. We focus on the underlying mechanisms of chronic inflammation, in particular the role of NF-κB and recent studies targeting proinflammatory mediators. We further explore the dysregulation of the immune response with age and immunosenescence as an important mechanistic immune response to acute stressors. We examine the role of the gastrointestinal microbiome, age-related dysbiosis, and the integrated stress response in modulating the inflammatory "response" to damage accumulation and stress. We conclude by focusing on the seminal question of whether reducing inflammation is useful and the results of related clinical trials. In summary, we propose that inflammation may be viewed both as a clinical biomarker of the failure of resilience mechanisms and as a causal factor in the rising burden of disease and disabilities with aging. The fact that inflammation can be reduced through nonpharmacological interventions such as diet and exercise suggests that a life course approach based on education may be a successful strategy to increase the health span with few adverse consequences.

10.
ACS Sens ; 8(12): 4554-4565, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37992233

ABSTRACT

Imaging infections in patients is challenging using conventional methods, motivating the development of positron emission tomography (PET) radiotracers targeting bacteria-specific metabolic pathways. Numerous techniques have focused on the bacterial cell wall, although peptidoglycan-targeted PET tracers have been generally limited to the short-lived carbon-11 radioisotope (t1/2 = 20.4 min). In this article, we developed and tested new tools for infection imaging using an amino sugar component of peptidoglycan, namely, derivatives of N-acetyl muramic acid (NAM) labeled with the longer-lived fluorine-18 (t1/2 = 109.6 min) radioisotope. Muramic acid was reacted directly with 4-nitrophenyl 2-[18F]fluoropropionate ([18F]NFP) to afford the enantiomeric NAM derivatives (S)-[18F]FMA and (R)-[18F]FMA. Both diastereomers were easily isolated and showed robust accumulation by human pathogens in vitro and in vivo, including Staphylococcus aureus. These results form the basis for future clinical studies using fluorine-18-labeled NAM-derived PET radiotracers.


Subject(s)
Muramic Acids , Peptidoglycan , Humans , Positron-Emission Tomography/methods , Fluorine Radioisotopes , Bacteria , Cell Wall
11.
J Infect Dis ; 228(Suppl 4): S281-S290, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37788505

ABSTRACT

BACKGROUND: Vertebral discitis-osteomyelitis (VDO) is a devastating infection of the spine that is challenging to distinguish from noninfectious mimics using computed tomography and magnetic resonance imaging. We and others have developed novel metabolism-targeted positron emission tomography (PET) radiotracers for detecting living Staphylococcus aureus and other bacteria in vivo, but their head-to-head performance in a well-validated VDO animal model has not been reported. METHODS: We compared the performance of several PET radiotracers in a rat model of VDO. [11C]PABA and [18F]FDS were assessed for their ability to distinguish S aureus, the most common non-tuberculous pathogen VDO, from Escherichia coli. RESULTS: In the rat S aureus VDO model, [11C]PABA could detect as few as 103 bacteria and exhibited the highest signal-to-background ratio, with a 20-fold increased signal in VDO compared to uninfected tissues. In a proof-of-concept experiment, detection of bacterial infection and discrimination between S aureus and E coli was possible using a combination of [11C]PABA and [18F]FDS. CONCLUSIONS: Our work reveals that several bacteria-targeted PET radiotracers had sufficient signal to background in a rat model of S aureus VDO to be potentially clinically useful. [11C]PABA was the most promising tracer investigated and warrants further investigation in human VDO.


Subject(s)
Discitis , Osteomyelitis , Staphylococcal Infections , Humans , Rats , Animals , Discitis/diagnostic imaging , 4-Aminobenzoic Acid , Escherichia coli , Positron-Emission Tomography/methods , Staphylococcal Infections/diagnostic imaging , Osteomyelitis/microbiology , Bacteria , Staphylococcus aureus , Radiopharmaceuticals
12.
J Infect Dis ; 228(Suppl 4): S249-S258, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37788506

ABSTRACT

Although nearly a century has elapsed since the discovery of penicillin, bacterial infections remain a major global threat. Global antibiotic use resulted in an astounding 42 billion doses of antibiotics administered in 2015 with 128 billion annual doses expected by 2030. This overuse of antibiotics has led to the selection of multidrug-resistant "super-bugs," resulting in increasing numbers of patients being susceptible to life-threatening infections with few available therapeutic options. New clinical tools are therefore urgently needed to identify bacterial infections and monitor response to antibiotics, thereby limiting overuse of antibiotics and improving overall health. Next-generation molecular imaging affords unique opportunities to target and identify bacterial infections, enabling spatial characterization as well as noninvasive, temporal monitoring of the natural course of the disease and response to therapy. These emerging noninvasive imaging approaches could overcome several limitations of current tools in infectious disease, such as the need for biological samples for testing with their associated sampling bias. Imaging of living bacteria can also reveal basic biological insights about their behavior in vivo.


Subject(s)
Bacterial Infections , Humans , Bacterial Infections/diagnostic imaging , Bacterial Infections/drug therapy , Anti-Bacterial Agents/therapeutic use , Bacteria , Penicillins/therapeutic use , Molecular Imaging
13.
ACS Sens ; 8(11): 4042-4054, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37878761

ABSTRACT

Solid tumors such as prostate cancer (PCa) commonly develop an acidic microenvironment with pH 6.5-7.2, owing to heterogeneous perfusion, high metabolic activity, and rapid cell proliferation. In preclinical prostate cancer models, disease progression is associated with a decrease in tumor extracellular pH, suggesting that pH imaging may reflect an imaging biomarker to detect aggressive and high-risk disease. Therefore, we developed a hyperpolarized carbon-13 MRI method to image the tumor extracellular pH (pHe) and prepared it for clinical translation for detection and risk stratification of PCa. This method relies on the rapid breakdown of hyperpolarized (HP) 1,2-glycerol carbonate (carbonyl-13C) via base-catalyzed hydrolysis to produce HP 13CO32-, which is neutralized and converted to HP H13CO3-. After injection, HP H13CO3- equilibrates with HP 13CO2 in vivo and enables the imaging of pHe. Using insights gleaned from mechanistic studies performed in the hyperpolarized state, we solved issues of polarization loss during preparation in a clinical polarizer system. We successfully customized a reaction apparatus suitable for clinical application, developed clinical standard operating procedures, and validated the radiofrequency pulse sequence and imaging data acquisition with a wide range of animal models. The results demonstrated that we can routinely produce a highly polarized and safe HP H13CO3- contrast agent suitable for human injection. Preclinical imaging studies validated the reliability and accuracy of measuring acidification in healthy kidney and prostate tumor tissue. These methods were used to support an Investigational New Drug application to the U.S. Food and Drug Administration. This methodology is now ready to be implemented in human trials, with the ultimate goal of improving the management of PCa.


Subject(s)
Bicarbonates , Prostatic Neoplasms , United States , Male , Animals , Humans , Bicarbonates/metabolism , Reproducibility of Results , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Magnetic Resonance Imaging/methods , Hydrogen-Ion Concentration , Tumor Microenvironment
14.
J Org Chem ; 88(21): 15237-15248, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37823733

ABSTRACT

We report the one-pot synthesis of N-CF3 heteroaryl amides (NTFMHA) from heteroaryl carboxylic acids and sterically hindered isothiocyanates, including various amino acid analogues, in the presence of AgF. The key to this reaction is the utilization of free heteroaryl acyl chlorides, rather than their corresponding hydrochloride salts. This method represents a complementary method of our previous work and enables modification to a variety of previously inaccessible structures, including α-tertiary amines and N-CF3-modified pharmaceuticals.

15.
J Nucl Med ; 64(11): 1676-1682, 2023 11.
Article in English | MEDLINE | ID: mdl-37770110

ABSTRACT

The International Atomic Energy Agency organized a technical meeting at its headquarters in Vienna, Austria, in 2022 that included 17 experts representing 12 countries, whose research spanned the development and use of radiolabeled agents for imaging infection. The meeting focused largely on bacterial pathogens. The group discussed and evaluated the advantages and disadvantages of several radiopharmaceuticals, as well as the science driving various imaging approaches. The main objective was to understand why few infection-targeted radiotracers are used in clinical practice despite the urgent need to better characterize bacterial infections. This article summarizes the resulting consensus, at least among the included scientists and countries, on the current status of radiopharmaceutical development for infection imaging. Also included are opinions and recommendations regarding current research standards in this area. This and future International Atomic Energy Agency-sponsored collaborations will advance the goal of providing the medical community with innovative, practical tools for the specific image-based diagnosis of infection.


Subject(s)
Bacterial Infections , Radiopharmaceuticals , Humans , Bacterial Infections/diagnostic imaging
16.
J Am Chem Soc ; 145(32): 17632-17642, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37535945

ABSTRACT

Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[18F]-fluoro-d-glucose ([18F]FDG), the most common tracer used in clinical imaging, to form [18F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [18F]FDG was reacted with ß-d-glucose-1-phosphate in the presence of maltose phosphorylase, the α-1,4- and α-1,3-linked products 2-deoxy-[18F]-fluoro-maltose ([18F]FDM) and 2-deoxy-2-[18F]-fluoro-sakebiose ([18F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (ß-1,3), and cellobiose (ß-1,4) phosphorylases to synthesize 2-deoxy-2-[18F]fluoro-trehalose ([18F]FDT), 2-deoxy-2-[18F]fluoro-laminaribiose ([18F]FDL), and 2-deoxy-2-[18F]fluoro-cellobiose ([18F]FDC). We subsequently tested [18F]FDM and [18F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. Both [18F]FDM and [18F]FSK were stable in human serum with high accumulation in preclinical infection models. The synthetic ease and high sensitivity of [18F]FDM and [18F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of these tracers to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [18F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.


Subject(s)
Fluorodeoxyglucose F18 , Trehalose , Humans , Cellobiose , Staphylococcus aureus , Positron-Emission Tomography/methods , Bacteria
17.
bioRxiv ; 2023 May 20.
Article in English | MEDLINE | ID: mdl-37293043

ABSTRACT

Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach, that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[ 18 F]-fluoro-D-glucose ([ 18 F]FDG), the most common tracer used in clinical imaging, to form [ 18 F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [ 18 F]FDG was reacted with ß-D-glucose-1-phosphate in the presence of maltose phosphorylase, both the α-1,4 and α-1,3-linked products 2-deoxy-[ 18 F]-fluoro-maltose ([ 18 F]FDM) and 2-deoxy-2-[ 18 F]-fluoro-sakebiose ([ 18 F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (ß-1,3), and cellobiose (ß-1,4) phosphorylases to synthesize 2-deoxy-2-[ 18 F]fluoro-trehalose ([ 18 F]FDT), 2-deoxy-2-[ 18 F]fluoro-laminaribiose ([ 18 F]FDL), and 2-deoxy-2-[ 18 F]fluoro-cellobiose ([ 18 F]FDC). We subsequently tested [ 18 F]FDM and [ 18 F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. The lead sakebiose-derived tracer [ 18 F]FSK was stable in human serum and showed high uptake in preclinical models of myositis and vertebral discitis-osteomyelitis. Both the synthetic ease, and high sensitivity of [ 18 F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of this tracer to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [ 18 F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.

18.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-37259457

ABSTRACT

Targeted nanotheranostic systems offer significant benefits due to the integration of diagnostic and therapeutic functionality, promoting personalized medicine. In recent years, prostate-specific membrane antigen (PSMA) has emerged as an ideal theranostic target, fueling multiple new drug approvals and changing the standard of care in prostate cancer (PCa). PSMA-targeted nanosystems such as self-assembled nanoparticles (NPs), liposomal structures, water-soluble polymers, dendrimers, and other macromolecules are under development for PCa theranostics due to their multifunctional sensing and therapeutic capabilities. Herein, we discuss the significance and up-to-date development of "PSMA-targeted nanocarrier systems for radioligand imaging and therapy of PCa". The review also highlights critical parameters for designing nanostructured radiopharmaceuticals for PCa, including radionuclides and their chelators, PSMA-targeting ligands, and the EPR effect. Finally, prospects and potential for clinical translation is discussed.

19.
J Nucl Med ; 64(7): 1076-1082, 2023 07.
Article in English | MEDLINE | ID: mdl-37201957

ABSTRACT

225Ac-targeted α-radiotherapy is a promising approach to treating malignancies, including prostate cancer. However, α-emitting isotopes are difficult to image because of low administered activities and a low fraction of suitable γ-emissions. The in vivo generator 134Ce/134La has been proposed as a potential PET imaging surrogate for the therapeutic nuclides 225Ac and 227Th. In this report, we detail efficient radiolabeling methods using the 225Ac-chelators DOTA and MACROPA. These methods were applied to radiolabeling of prostate cancer imaging agents, including PSMA-617 and MACROPA-PEG4-YS5, for evaluation of their in vivo pharmacokinetic characteristics and comparison to the corresponding 225Ac analogs. Methods: Radiolabeling was performed by mixing DOTA/MACROPA chelates with 134Ce/134La in NH4OAc, pH 8.0, at room temperature, and radiochemical yields were monitored by radio-thin-layer chromatography. In vivo biodistributions of 134Ce-DOTA/MACROPA.NH2 complexes were assayed through dynamic small-animal PET/CT imaging and ex vivo biodistribution studies over 1 h in healthy C57BL/6 mice, compared with free 134CeCl3 In vivo, preclinical imaging of 134Ce-PSMA-617 and 134Ce-MACROPA-PEG4-YS5 was performed on 22Rv1 tumor-bearing male nu/nu-mice. Ex vivo biodistribution was performed for 134Ce/225Ac-MACROPA-PEG4-YS5 conjugates. Results: 134Ce-MACROPA.NH2 demonstrated near-quantitative labeling with 1:1 ligand-to-metal ratios at room temperature, whereas a 10:1 ligand-to-metal ratio and elevated temperatures were required for DOTA. Rapid urinary excretion and low liver and bone uptake were seen for 134Ce/225Ac-DOTA/MACROPA. NH2 conjugates in comparison to free 134CeCl3 confirmed high in vivo stability. An interesting observation during the radiolabeling of tumor-targeting vectors PSMA-617 and MACROPA-PEG4-YS5-that the daughter 134La was expelled from the chelate after the decay of parent 134Ce-was confirmed through radio-thin-layer chromatography and reverse-phase high-performance liquid chromatography. Both conjugates, 134Ce-PSMA-617 and 134Ce-MACROPA-PEG4-YS5, displayed tumor uptake in 22Rv1 tumor-bearing mice. The ex vivo biodistribution of 134Ce-MACROPA.NH2, 134Ce-DOTA and 134Ce-MACROPA-PEG4-YS5 corroborated well with the respective 225Ac-conjugates. Conclusion: These results demonstrate the PET imaging potential for 134Ce/134La-labeled small-molecule and antibody agents. The similar 225Ac and 134Ce/134La-chemical and pharmacokinetic characteristics suggest that the 134Ce/134La pair may act as a PET imaging surrogate for 225Ac-based radioligand therapies.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Humans , Male , Animals , Mice , Precision Medicine , Ligands , Tissue Distribution , Mice, Inbred C57BL , Positron-Emission Tomography/methods , Radiopharmaceuticals , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Cell Line, Tumor
20.
Clin Cancer Res ; 29(10): 1916-1928, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36917693

ABSTRACT

PURPOSE: Radiopharmaceutical therapy is changing the standard of care in prostate cancer and other malignancies. We previously reported high CD46 expression in prostate cancer and developed an antibody-drug conjugate and immunoPET agent based on the YS5 antibody, which targets a tumor-selective CD46 epitope. Here, we present the preparation, preclinical efficacy, and toxicity evaluation of [225Ac]DOTA-YS5, a radioimmunotherapy agent based on the YS5 antibody. EXPERIMENTAL DESIGN: [225Ac]DOTA-YS5 was developed, and its therapeutic efficiency was tested on cell-derived (22Rv1, DU145), and patient-derived (LTL-545, LTL484) prostate cancer xenograft models. Biodistribution studies were carried out on 22Rv1 tumor xenograft models to confirm the targeting efficacy. Toxicity analysis of the [225Ac]DOTA-YS5 was carried out on nu/nu mice to study short-term (acute) and long-term (chronic) toxicity. RESULTS: Biodistribution study shows that [225Ac]DOTA-YS5 agent delivers high levels of radiation to the tumor tissue (11.64% ± 1.37%ID/g, 28.58% ± 10.88%ID/g, 29.35% ± 7.76%ID/g, and 31.78% ± 5.89%ID/g at 24, 96, 168, and 408 hours, respectively), compared with the healthy organs. [225Ac]DOTA-YS5 suppressed tumor size and prolonged survival in cell line-derived and patient-derived xenograft models. Toxicity analysis revealed that the 0.5 µCi activity levels showed toxicity to the kidneys, likely due to redistribution of daughter isotope 213Bi. CONCLUSIONS: [225Ac]DOTA-YS5 suppressed the growth of cell-derived and patient-derived xenografts, including prostate-specific membrane antigen-positive and prostate-specific membrane antigen-deficient models. Overall, this preclinical study confirms that [225Ac]DOTA-YS5 is a highly effective treatment and suggests feasibility for clinical translation of CD46-targeted radioligand therapy in prostate cancer.


Subject(s)
Prostatic Neoplasms , Radioisotopes , Mice , Male , Animals , Humans , Radioisotopes/therapeutic use , Actinium/therapeutic use , Bismuth , Radioimmunotherapy , Alpha Particles/therapeutic use , Tissue Distribution , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/drug therapy , Membrane Cofactor Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...