Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Mol Mutagen ; 65 Suppl 1: 14-24, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37554110

ABSTRACT

Exposure to ultraviolet (UV) light is the primary etiological agent for skin cancers because UV damages cellular DNA. The most frequent form of UV damage is the cyclobutane pyrimidine dimer (CPD), which consists of covalent linkages between neighboring pyrimidine bases in DNA. In human cells, the 5' position of cytosine bases in CG dinucleotides is frequently methylated, and methylated cytosines in the TP53 tumor suppressor are often sites of mutation hotspots in skin cancers. It has been argued that this is because cytosine methylation promotes UV-induced CPD formation; however, the effects of cytosine methylation on CPD formation are controversial, with conflicting results from previous studies. Here, we use a genome-wide method known as CPD-seq to map UVB- and UVC-induced CPDs across the yeast genome in the presence or absence in vitro methylation by the CpG methyltransferase M.SssI. Our data indicate that cytosine methylation increases UVB-induced CPD formation nearly 2-fold relative to unmethylated DNA, but the magnitude of induction depends on the flanking sequence context. Sequence contexts with a 5' guanine base (e.g., GCCG and GTCG) show the strongest induction due to cytosine methylation, potentially because these sequence contexts are less efficient at forming CPD lesions in the absence of methylation. We show that cytosine methylation also modulates UVC-induced CPD formation, albeit to a lesser extent than UVB. These findings can potentially reconcile previous studies, and define the impact of cytosine methylation on UV damage across a eukaryotic genome.


Subject(s)
Pyrimidine Dimers , Skin Neoplasms , Humans , Pyrimidine Dimers/genetics , Base Sequence , DNA Damage , DNA Methylation/genetics , Cytosine , DNA/genetics , Ultraviolet Rays/adverse effects , Skin Neoplasms/etiology
2.
NAR Cancer ; 5(4): zcad058, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38155930

ABSTRACT

Apolipoprotein B messenger RNA (mRNA) editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases cause genetic instability during cancer development. Elevated APOBEC3A (A3A) levels result in APOBEC signature mutations; however, mechanisms regulating A3A abundance in breast cancer are unknown. Here, we show that dysregulating the ubiquitin-proteasome system with proteasome inhibitors, including Food and Drug Administration-approved anticancer drugs, increased A3A abundance in breast cancer and multiple myeloma cell lines. Unexpectedly, elevated A3A occurs via an ∼100-fold increase in A3A mRNA levels, indicating that proteasome inhibition triggers a transcriptional response as opposed to or in addition to blocking A3A degradation. This transcriptional regulation is mediated in part through FBXO22, a protein that functions in SKP1-cullin-F-box ubiquitin ligase complexes and becomes dysregulated during carcinogenesis. Proteasome inhibitors increased cellular cytidine deaminase activity, decreased cellular proliferation and increased genomic DNA damage in an A3A-dependent manner. Our findings suggest that proteasome dysfunction, either acquired during cancer development or induced therapeutically, could increase A3A-induced genetic heterogeneity and thereby influence therapeutic responses in patients.

3.
JBMR Plus ; 7(12): e10837, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130753

ABSTRACT

Chronic kidney disease (CKD)-mineral bone disorder (CKD-MBD) leads to fractures and cardiovascular disease. Observational studies suggest beneficial effects of dietary fiber on both bone and cardiovascular outcomes, but the effect of fiber on CKD-MBD is unknown. To determine the effect of fiber on CKD-MBD, we fed the Cy/+ rat with progressive CKD a casein-based diet of 0.7% phosphate with 10% inulin (fermentable fiber) or cellulose (non-fermentable fiber) from 22 weeks to either 30 or 32 weeks of age (~30% and ~15% of normal kidney function; CKD 4 and 5). We assessed CKD-MBD end points of biochemistry, bone quantity and quality, cardiovascular health, and cecal microbiota and serum gut-derived uremic toxins. Results were analyzed by two-way analysis of variance (ANOVA) to evaluate the main effects of CKD stage and inulin, and their interaction. The results showed that in CKD animals, inulin did not alter kidney function but reduced the increase from stage 4 to 5 in serum levels of phosphate and parathyroid hormone, but not fibroblast growth factor-23 (FGF23). Bone turnover and cortical bone parameters were similarly improved but mechanical properties were not altered. Inulin slowed progression of aorta and cardiac calcification, left ventricular mass index, and fibrosis. To understand the mechanism, we assessed intestinal microbiota and found changes in alpha and beta diversity and significant changes in several taxa with inulin, together with a reduction in circulating gut derived uremic toxins such as indoxyl sulfate and short-chain fatty acids. In conclusion, the addition of the fermentable fiber inulin to the diet of CKD rats led to a slowed progression of CKD-MBD without affecting kidney function, likely mediated by changes in the gut microbiota composition and lowered gut-derived uremic toxins. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

4.
Genetics ; 224(3)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37170598

ABSTRACT

Ultraviolet (UV) light primarily causes C > T substitutions in lesion-forming dipyrimidine sequences. However, many of the key driver mutations in melanoma do not fit this canonical UV signature, but are instead caused by T > A, T > C, or C > A substitutions. To what extent exposure to the UVB or UVA spectrum of sunlight can induce these noncanonical mutation classes, and the molecular mechanism involved is unclear. Here, we repeatedly exposed wild-type or repair-deficient yeast (Saccharomyces cerevisiae) to UVB or UVA light and characterized the resulting mutations by whole genome sequencing. Our data indicate that UVB induces C > T and T > C substitutions in dipyrimidines, and T > A substitutions that are often associated with thymine-adenine (TA) sequences. All of these mutation classes are induced in nucleotide excision repair-deficient cells and show transcriptional strand asymmetry, suggesting they are caused by helix-distorting UV photoproducts. In contrast, UVA exposure induces orders of magnitude fewer mutations with a distinct mutation spectrum. UVA-induced mutations are elevated in Ogg1-deficient cells, and the resulting spectrum consists almost entirely of C > A/G > T mutations, indicating they are likely derived from oxidative guanine lesions. These mutations show replication asymmetry, with elevated G > T mutations on the leading strand, suggesting there is a strand bias in the removal or bypass of guanine lesions during replication. Finally, we develop a mutation reporter to show that UVA induces a G > T reversion mutation in yeast that mimics the oncogenic NRAS Q61K mutation in melanoma. Taken together, these findings indicate that UVA and UVB exposure can induce many of the noncanonical mutation classes that cause driver mutations in melanoma.


Subject(s)
Melanoma , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , DNA Damage , Mutation , Mutagenesis , DNA Repair/genetics , Ultraviolet Rays/adverse effects , Melanoma/genetics , Guanine
5.
bioRxiv ; 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36778372

ABSTRACT

Background: Dietary fiber is important for a healthy diet, but intake is low in CKD patients and the impact this has on the manifestations of CKD-Mineral Bone Disorder (MBD) is unknown. Methods: The Cy/+ rat with progressive CKD was fed a casein-based diet of 0.7% phosphate with 10% inulin (fermentable fiber) or cellulose (non-fermentable fiber) from 22 weeks to either 30 or 32 weeks of age (~30 and ~15 % of normal kidney function). We assessed CKD-MBD, cecal microbiota, and serum gut-derived uremic toxins. Two-way ANOVA was used to evaluate the effect of age and inulin diet, and their interaction. Results: In CKD animals, dietary inulin led to changes in microbiota alpha and beta diversity at 30 and 32 weeks, with higher relative abundance of several taxa, including Bifidobacterium and Bacteroides , and lower Lactobacillus . Inulin reduced serum levels of gut-derived uremic toxins, phosphate, and parathyroid hormone, but not fibroblast growth factor-23. Dietary inulin decreased aorta and cardiac calcification and reduced left ventricular mass index and cardiac fibrosis. Bone turnover and cortical bone parameters were improved with inulin; however, bone mechanical properties were not altered. Conclusions: The addition of the fermentable fiber inulin to the diet of CKD rats led to changes in the gut microbiota composition, lowered gut-derived uremic toxins, and improved most parameters of CKD-MBD. Future studies should assess this fiber as an additive therapy to other pharmacologic and diet interventions in CKD. Significance Statement: Dietary fiber has well established beneficial health effects. However, the impact of fermentable dietary fiber on the intestinal microbiome and CKD-MBD is poorly understood. We used an animal model of progressive CKD and demonstrated that the addition of 10% of the fermentable fiber inulin to the diet altered the intestinal microbiota and lowered circulating gut-derived uremic toxins, phosphorus, and parathyroid hormone. These changes were associated with improved cortical bone parameters, lower vascular calcification, and reduced cardiac hypertrophy, fibrosis and calcification. Taken together, dietary fermentable fiber may be a novel additive intervention to traditional therapies of CKD-MBD.

6.
Am J Physiol Cell Physiol ; 320(4): C577-C590, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33439777

ABSTRACT

The peroxisome proliferator-activated receptors (PPARs) have been previously implicated in the pathophysiology of skeletal muscle dysfunction in women with breast cancer (BC) and animal models of BC. This study investigated alterations induced in skeletal muscle by BC-derived factors in an in vitro conditioned media (CM) system and tested the hypothesis that BC cells secrete a factor that represses PPAR-γ (PPARG) expression and its transcriptional activity, leading to downregulation of PPARG target genes involved in mitochondrial function and other metabolic pathways. We found that BC-derived factors repress PPAR-mediated transcriptional activity without altering protein expression of PPARG. Furthermore, we show that BC-derived factors induce significant alterations in skeletal muscle mitochondrial function and lipid accumulation, which are rescued with exogenous expression of PPARG. The PPARG agonist drug rosiglitazone was able to rescue BC-induced lipid accumulation but did not rescue effects of BC-derived factors on PPAR-mediated transcription or mitochondrial function. These data suggest that BC-derived factors alter lipid accumulation and mitochondrial function via different mechanisms that are both related to PPARG signaling, with mitochondrial dysfunction likely being altered via repression of PPAR-mediated transcription, and lipid accumulation being altered via transcription-independent functions of PPARG.


Subject(s)
Breast Neoplasms/metabolism , Cachexia/metabolism , Lipid Metabolism , Mitochondria, Muscle/metabolism , Myoblasts, Skeletal/metabolism , PPAR gamma/metabolism , Paracrine Communication , Animals , Breast Neoplasms/complications , Breast Neoplasms/pathology , Cachexia/etiology , Cachexia/genetics , Cachexia/pathology , Cell Line, Tumor , Culture Media, Conditioned/metabolism , Female , HEK293 Cells , Humans , Lipid Metabolism/drug effects , Mice , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/genetics , Mitochondria, Muscle/pathology , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/pathology , PPAR gamma/agonists , PPAR gamma/genetics , Rosiglitazone/pharmacology , Signal Transduction , Transcription, Genetic
7.
NPJ Breast Cancer ; 6: 18, 2020.
Article in English | MEDLINE | ID: mdl-32550263

ABSTRACT

Increased susceptibility to fatigue is a negative predictor of survival commonly experienced by women with breast cancer (BC). Here, we sought to identify molecular changes induced in human skeletal muscle by BC regardless of treatment history or tumor molecular subtype using RNA-sequencing (RNA-seq) and proteomic analyses. Mitochondrial dysfunction was apparent across all molecular subtypes, with the greatest degree of transcriptomic changes occurring in women with HER2/neu-overexpressing tumors, though muscle from patients of all subtypes exhibited similar pathway-level dysregulation. Interestingly, we found no relationship between anticancer treatments and muscle gene expression, suggesting that fatigue is a product of BC per se rather than clinical history. In vitro and in vivo experimentation confirmed the ability of BC cells to alter mitochondrial function and ATP content in muscle. These data suggest that interventions supporting muscle in the presence of BC-induced mitochondrial dysfunction may alleviate fatigue and improve the lives of women with BC.

8.
Clin Cancer Res ; 25(7): 2336-2347, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30559167

ABSTRACT

PURPOSE: This study tested the hypothesis that a patient-derived orthotopic xenograft (PDOX) model would recapitulate the common clinical phenomenon of breast cancer-induced skeletal muscle (SkM) fatigue in the absence of muscle wasting. This study additionally sought to identify drivers of this condition to facilitate the development of therapeutic agents for patients with breast cancer experiencing muscle fatigue. EXPERIMENTAL DESIGN: Eight female BC-PDOX-bearing mice were produced via transplantation of tumor tissue from 8 female patients with breast cancer. Individual hind limb muscles from BC-PDOX mice were isolated at euthanasia for RNA-sequencing, gene and protein analyses, and an ex vivo muscle contraction protocol to quantify tumor-induced aberrations in SkM function. Differentially expressed genes (DEG) in the BC-PDOX mice relative to control mice were identified using DESeq2, and multiple bioinformatics platforms were employed to contextualize the DEGs. RESULTS: We found that SkM from BC-PDOX-bearing mice showed greater fatigability than control mice, despite no differences in absolute muscle mass. PPAR, mTOR, IL6, IL1, and several other signaling pathways were implicated in the transcriptional changes observed in the BC-PDOX SkM. Moreover, 3 independent in silico analyses identified PPAR signaling as highly dysregulated in the SkM of both BC-PDOX-bearing mice and human patients with early-stage nonmetastatic breast cancer. CONCLUSIONS: Collectively, these data demonstrate that the BC-PDOX model recapitulates the expected breast cancer-induced SkM fatigue and further identify aberrant PPAR signaling as an integral factor in the pathology of this condition.


Subject(s)
Breast Neoplasms/complications , Breast Neoplasms/metabolism , Fatigue Syndrome, Chronic/etiology , Fatigue Syndrome, Chronic/physiopathology , Muscle Fatigue , Peroxisome Proliferator-Activated Receptors/metabolism , Signal Transduction , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mice , Sequence Analysis, RNA , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
9.
Microbiome ; 5(1): 76, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28705228

ABSTRACT

The concept of hygiene is rooted in the relationship between cleanliness and the maintenance of good health. Since the widespread acceptance of the germ theory of disease, hygiene has become increasingly conflated with sterilization. In reviewing studies across the hygiene literature (most often hand hygiene), we found that nearly all studies of hand hygiene utilize bulk reduction in bacterial load as a proxy for reduced transmission of pathogenic organisms. This treatment of hygiene may be insufficient in light of recent microbial ecology research, which has demonstrated that humans have intimate and evolutionarily significant relationships with a diverse assemblage of microorganisms (our microbiota). The human skin is home to a diverse and specific community of microorganisms, which include members that exist across the ecological spectrum from pathogen through commensal to mutualist. Most evidence suggests that the skin microbiota is likely of direct benefit to the host and only rarely exhibits pathogenicity. This complex ecological context suggests that the conception of hygiene as a unilateral reduction or removal of microbes has outlived its usefulness. As such, we suggest the explicit definition of hygiene as "those actions and practices that reduce the spread or transmission of pathogenic microorganisms, and thus reduce the incidence of disease."


Subject(s)
Hygiene Hypothesis , Microbiota , Skin/microbiology , Hand Disinfection , Hand Hygiene , Humans , Infections/microbiology , Infections/transmission , Infections/virology , Microbial Interactions , Symbiosis
10.
Glob Chang Biol ; 22(2): 845-55, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26222331

ABSTRACT

Projected changes in climate are expected to have widespread effects on plant community composition and diversity in coming decades. However, multisite, multifactor climate manipulation studies that have examined whether observed responses are regionally consistent and whether multiple climate perturbations are interdependent are rare. Using such an experiment, we quantified how warming and increased precipitation intensity affect the relative dominance of plant functional groups and diversity across a broad climate gradient of Mediterranean prairies. We implemented a fully factorial climate manipulation of warming (+2.5-3.0 °C) and increased wet-season precipitation (+20%) at three sites across a 520-km latitudinal gradient in the Pacific Northwest, USA. After seeding with a nearly identical mix of native species at all sites, we measured plant community composition (i.e., cover, richness, and diversity), temperature, and soil moisture for 3 years. Warming and the resultant drying of soils altered plant community composition, decreased native diversity, and increased total cover, with warmed northern communities becoming more similar to communities further south. In particular, after two full years of warming, annual cover increased and forb cover decreased at all sites mirroring the natural biogeographic pattern. This suggests that the extant climate gradient of increasing heat and drought severity is responsible for a large part of the observed biogeographic pattern of increasing annual invasion in US West Coast prairies as one moves further south. Additional precipitation during the rainy season did little to relieve drought stress and had minimal effects on plant community composition. Our results suggest that the projected increase in drought severity (i.e., hotter, drier summers) in Pacific Northwest prairies may lead to increased invasion by annuals and a loss of forbs, similar to what has been observed in central and southern California, resulting in novel species assemblages and shifts in functional composition, which in turn may alter ecosystem functions.


Subject(s)
Climate Change , Grassland , Biodiversity , Introduced Species , Northwestern United States , Plants , Rain , Temperature
11.
Cell Rep ; 11(3): 344-50, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25865889

ABSTRACT

Eating disorders, such as anorexia nervosa and bulimia nervosa, are common and severe mental illnesses of unknown etiology. Recently, we identified a rare missense mutation in the transcription factor estrogen-related receptor alpha (ESRRA) that is associated with the development of eating disorders. However, little is known about ESRRA function in the brain. Here, we report that Esrra is expressed in the mouse brain and demonstrate that Esrra levels are regulated by energy reserves. Esrra-null female mice display a reduced operant response to a high-fat diet, compulsivity/behavioral rigidity, and social deficits. Selective Esrra knockdown in the prefrontal and orbitofrontal cortices of adult female mice recapitulates reduced operant response and increased compulsivity, respectively. These results indicate that Esrra deficiency in the mouse brain impairs behavioral responses in multiple functional domains.


Subject(s)
Brain/metabolism , Mental Disorders/metabolism , Receptors, Estrogen/metabolism , Animals , Anorexia Nervosa/metabolism , Diet, High-Fat , Female , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , ERRalpha Estrogen-Related Receptor
12.
Mycologia ; 106(1): 22-31, 2014.
Article in English | MEDLINE | ID: mdl-24603832

ABSTRACT

The spread of invasive species is complicated and multifaceted. Enemy spillover (i.e. the transfer of a natural enemy from a reservoir host to a novel host) is one mechanism that facilitates the spread of non-native species. The reservoir host is a species that harbors high abundance of the enemy with little cost to fitness. We asked whether Schedonorus arundinaceus (tall fescue), a highly invasive grass species in North America, is a potential reservoir host for the ubiquitous genus of fungi, Alternaria. We also asked whether spillover of Alternaria is possible among grasses that commonly occur with S. arundinaceus in grassland ecosystems. We performed a greenhouse cross inoculation of three isolates of Alternaria and six grass species (three native, three invasive, including S. arundinaceus). We determined that spillover is possible because the fungal isolates infected and caused disease symptoms on all six grasses and decreased biomass in two of the grass species. We also determined that the invasive grass species appear to be more competent hosts than the native species and that S. arundinaceus could be a likely reservoir host for Alternaria spp. because it can harbor the pathogen with no apparent fitness cost.


Subject(s)
Alternaria/physiology , Disease Reservoirs/microbiology , Plant Diseases/microbiology , Poaceae/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...