Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Virol ; 97(7): e0085821, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37338370

ABSTRACT

The 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome forms RNA structures that regulate virus replication and translation. The region contains an internal ribosomal entry site (IRES) and a 5'-terminal region. Binding of the liver-specific microRNA (miRNA) miR-122 to two binding sites in the 5'-terminal region regulates viral replication, translation, and genome stability and is essential for efficient virus replication, but its precise mechanism of action is still unresolved. A current hypothesis is that miR-122 binding stimulates viral translation by facilitating the viral 5' UTR to form the translationally active HCV IRES RNA structure. While miR-122 is essential for detectable replication of wild-type HCV genomes in cell culture, several viral variants with 5' UTR mutations exhibit low-level replication in the absence of miR-122. We show that HCV mutants capable of replicating independently of miR-122 display an enhanced translation phenotype that correlates with their ability to replicate independently of miR-122. Further, we provide evidence that translation regulation is the major role for miR-122 and show that miR-122-independent HCV replication can be rescued to miR-122-dependent levels by the combined impacts of 5' UTR mutations that stimulate translation and by stabilizing the viral genome by knockdown of host exonucleases and phosphatases that degrade the genome. Finally, we show that HCV mutants capable of replicating independently of miR-122 also replicate independently of other microRNAs generated by the canonical miRNA synthesis pathway. Thus, we provide a model suggesting that translation stimulation and genome stabilization are the primary roles for miR-122 in promoting HCV. IMPORTANCE The unusual and essential role of miR-122 in promoting HCV propagation is incompletely understood. To better understand its role, we have analyzed HCV mutants capable of replicating independently of miR-122. Our data show that the ability of viruses to replicate independently of miR-122 correlates with enhanced virus translation but that genome stabilization is required to restore efficient HCV replication. This suggests that viruses must gain both abilities to escape the need for miR-122 and impacts the possibility that HCV can evolve to replicate outside the liver.


Subject(s)
Hepatitis C , MicroRNAs , Humans , Hepacivirus/physiology , 5' Untranslated Regions , MicroRNAs/genetics , MicroRNAs/metabolism , Internal Ribosome Entry Sites , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Replication/physiology , Protein Biosynthesis
2.
Viruses ; 15(6)2023 05 30.
Article in English | MEDLINE | ID: mdl-37376581

ABSTRACT

The global COVID-19 pandemic continues with continued cases worldwide and the emergence of new SARS-CoV-2 variants. In our study, we have developed novel tools with applications for screening antivirals, identifying virus-host dependencies, and characterizing viral variants. Using reverse genetics, we rescued SARS-CoV-2 Wuhan1 (D614G variant) wild type (WTFL) and reporter virus (NLucFL) using molecular BAC clones. The replication kinetics, plaque morphology, and titers were comparable between viruses rescued from molecular clones and a clinical isolate (VIDO-01 strain). Furthermore, the reporter SARS-CoV-2 NLucFL virus exhibited robust luciferase values over the time course of infection and was used to develop a rapid antiviral assay using remdesivir as proof-of-principle. In addition, as a tool to study lung-relevant virus-host interactions, we established novel human lung cell lines that support SARS-CoV-2 infection with high virus-induced cytopathology. Six lung cell lines (NCI-H23, A549, NCI-H1703, NCI-H520, NCI-H226, and HCC827) and HEK293T cells were transduced to stably express ACE2 and tested for their ability to support virus infection. A549ACE2 B1 and HEK293TACE2 A2 cell lines exhibited more than 70% virus-induced cell death, and a novel lung cell line, NCI-H23ACE2 A3, showed about ~99% cell death post-infection. These cell lines are ideal for assays relying on live-dead selection, such as CRISPR knockout and activation screens.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/physiology , Cytology , Pandemics , Reverse Genetics , HEK293 Cells , Lung , Antiviral Agents/pharmacology
3.
ACS Infect Dis ; 9(4): 749-761, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37011043

ABSTRACT

The recent emergence of SARS-CoV-2 in the human population has caused a global pandemic. The virus encodes two proteases, Mpro and PLpro, that are thought to play key roles in the suppression of host protein synthesis and immune response evasion during infection. To identify the specific host cell substrates of these proteases, active recombinant SARS-CoV-2 Mpro and PLpro were added to A549 and Jurkat human cell lysates, and subtiligase-mediated N-terminomics was used to capture and enrich protease substrate fragments. The precise location of each cleavage site was identified using mass spectrometry. Here, we report the identification of over 200 human host proteins that are potential substrates for SARS-CoV-2 Mpro and PLpro and provide a global mapping of proteolysis for these two viral proteases in vitro. Modulating proteolysis of these substrates will increase our understanding of SARS-CoV-2 pathobiology and COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Peptide Synthases , Peptide Hydrolases/metabolism
4.
Pathogens ; 11(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36145436

ABSTRACT

Despite the advancement in antiviral therapy, Hepatitis C remains a global health challenge and one of the leading causes of hepatitis related deaths worldwide. Hepatitis C virus, the causative agent, is a positive strand RNA virus that requires a liver specific microRNA called miR-122 for its replication. Unconventional to the canonical role of miRNAs in translation suppression by binding to 3'Untranslated Region (UTR) of messenger RNAs, miR-122 binds to two sites on the 5'UTR of viral genome and promotes viral propagation. In this review, we describe the unique relationship between the liver specific microRNA and HCV, the current knowledge on the mechanisms by which the virus uses miR-122 to promote the virus life cycle, and how miR-122 impacts viral tropism and pathogenesis. We will also discuss the use of anti-miR-122 therapy and its impact on viral evolution of miR-122-independent replication. This review further provides insight into how viruses manipulate host factors at the initial stage of infection to establish a successful infection.

5.
J Virol ; 96(4): e0190321, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34908444

ABSTRACT

A liver-specific microRNA, miR-122, anneals to the hepatitis C virus (HCV) genomic 5' terminus and is essential for virus replication in cell culture. However, bicistronic HCV replicons and full-length RNAs with specific mutations in the 5' untranslated region (UTR) can replicate, albeit to low levels, without miR-122. In this study, we have identified that HCV RNAs lacking the structural gene region or having encephalomyocarditis virus internal ribosomal entry site (EMCV IRES)-regulated translation had reduced requirements for miR-122. In addition, we found that a smaller proportion of cells supported miR-122-independent replication compared a population of cells supporting miR-122-dependent replication, while viral protein levels per positive cell were similar. Further, the proportion of cells supporting miR-122-independent replication increased with the amount of viral RNA delivered, suggesting that establishment of miR-122-independent replication in a cell is affected by the amount of viral RNA delivered. HCV RNAs replicating independently of miR-122 were not affected by supplementation with miR-122, suggesting that miR-122 is not essential for maintenance of an miR-122-independent HCV infection. However, miR-122 supplementation had a small positive impact on miR-122-dependent replication, suggesting a minor role in enhancing ongoing virus RNA accumulation. We suggest that miR-122 functions primarily to initiate an HCV infection but has a minor influence on its maintenance, and we present a model in which miR-122 is required for replication complex formation at the beginning of an infection and also supports new replication complex formation during ongoing infection and after infected cell division. IMPORTANCE The mechanism by which miR-122 promotes the HCV life cycle is not well understood, and a role in directly promoting genome amplification is still debated. In this study, we have shown that miR-122 increases the rate of viral RNA accumulation and promotes the establishment of an HCV infection in a greater number of cells than in the absence of miR-122. However, we also confirm a minor role in promoting ongoing virus replication and propose a role in the initiation of new replication complexes throughout a virus infection. This study has implications for the use of anti-miR-122 as a potential HCV therapy.


Subject(s)
Hepacivirus/physiology , MicroRNAs/genetics , Virus Replication , Cell Line , Encephalomyocarditis virus/genetics , Genome, Viral/genetics , Hepacivirus/genetics , Hepacivirus/growth & development , Humans , Internal Ribosome Entry Sites/genetics , Mutation , RNA Stability , RNA, Viral/genetics , RNA, Viral/metabolism , Viral Nonstructural Proteins/biosynthesis , Viral Replication Compartments/metabolism , Viral Structural Proteins/genetics
6.
Pathogens ; 10(11)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34832669

ABSTRACT

(1) Background: There is a strong need for prevention and treatment strategies for COVID-19 that are not impacted by SARS-CoV-2 mutations emerging in variants of concern. After virus infection, host ER resident sigma receptors form direct interactions with non-structural SARS-CoV-2 proteins present in the replication complex. (2) Methods: In this work, highly specific sigma receptor ligands were investigated for their ability to inhibit both SARS-CoV-2 genome replication and virus induced cellular toxicity. This study found antiviral activity associated with agonism of the sigma-1 receptor (e.g., SA4503), ligation of the sigma-2 receptor (e.g., CM398), and a combination of the two pathways (e.g., AZ66). (3) Results: Intermolecular contacts between these ligands and sigma receptors were identified by structural modeling. (4) Conclusions: Sigma receptor ligands and drugs with off-target sigma receptor binding characteristics were effective at inhibiting SARS-CoV-2 infection in primate and human cells, representing a potential therapeutic avenue for COVID-19 prevention and treatment.

7.
Int J Mol Sci ; 21(16)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784807

ABSTRACT

Hepatitis C virus (HCV) replication requires annealing of a liver specific microRNA, miR-122 to 2 sites on 5' untranslated region (UTR). While, microRNAs downregulate gene expression by binding to the 3' untranslated region of the target mRNA, in this case, the microRNA anneals to the 5'UTR of the viral genomes and upregulates the viral lifecycle. In this review, we explore the current understandings of the mechanisms by which miR-122 promotes the HCV lifecycle, and its contributions to pathogenesis. Annealing of miR-122 has been reported to (a) stimulate virus translation by promoting the formation of translationally active internal ribosome entry site (IRES) RNA structure, (b) stabilize the genome, and (c) induce viral genomic RNA replication. MiR-122 modulates lipid metabolism and suppresses tumor formation, and sequestration by HCV may influence virus pathogenesis. We also discuss the possible use of miR-122 as a biomarker for chronic hepatitis and as a therapeutic target. Finally, we discuss roles for miR-122 and other microRNAs in promoting other viruses.


Subject(s)
Hepacivirus/physiology , Liver/metabolism , Liver/virology , MicroRNAs/metabolism , Virus Replication/physiology , Animals , Hepacivirus/genetics , Humans , MicroRNAs/genetics , Organ Specificity , Tropism
8.
Nucleic Acids Res ; 48(16): 9235-9249, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32810257

ABSTRACT

Hepatitis C virus (HCV) replication requires annealing of a liver specific small-RNA, miR-122 to 2 sites on 5' untranslated region (UTR). Annealing has been reported to (a) stabilize the genome, (b) stimulate translation and (c) promote the formation of translationally active Internal Ribosome Entry Site (IRES) RNA structure. In this report, we map the RNA element to which small RNA annealing promotes HCV to nucleotides 1-44 and identify the relative impact of small RNA annealing on virus translation promotion and genome stabilization. We mapped the optimal region on the HCV genome to which small RNA annealing promotes virus replication to nucleotides 19-37 and found the efficiency of viral RNA accumulation decreased as annealing moved away from this region. Then, by using a panel of small RNAs that promote replication with varying efficiencies we link the efficiency of lifecycle promotion with translation stimulation. By contrast small RNA annealing stabilized the viral genome even if they did not promote virus replication. Thus, we propose that miR-122 annealing promotes HCV replication by annealing to an RNA element that activates the HCV IRES and stimulates translation, and that miR-122 induced HCV genome stabilization is insufficient alone but enhances virus replication.


Subject(s)
Genomic Instability/genetics , Hepatitis C/genetics , MicroRNAs/genetics , Protein Biosynthesis , 5' Untranslated Regions/genetics , Argonaute Proteins/genetics , Genome, Viral/genetics , Hepacivirus/genetics , Hepacivirus/pathogenicity , Hepatitis C/virology , Humans , Internal Ribosome Entry Sites/genetics , RNA Stability/genetics , Regulatory Sequences, Nucleic Acid/genetics , Virus Replication/genetics
9.
Nucleic Acids Res ; 46(18): 9776-9792, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30053137

ABSTRACT

Annealing of the liver-specific microRNA, miR-122, to the Hepatitis C virus (HCV) 5' UTR is required for efficient virus replication. By using siRNAs to pressure escape mutations, 30 replication-competent HCV genomes having nucleotide changes in the conserved 5' untranslated region (UTR) were identified. In silico analysis predicted that miR-122 annealing induces canonical HCV genomic 5' UTR RNA folding, and mutant 5' UTR sequences that promoted miR-122-independent HCV replication favored the formation of the canonical RNA structure, even in the absence of miR-122. Additionally, some mutant viruses adapted to use the siRNA as a miR-122-mimic. We further demonstrate that small RNAs that anneal with perfect complementarity to the 5' UTR stabilize and promote HCV genome accumulation. Thus, HCV genome stabilization and life-cycle promotion does not require the specific annealing pattern demonstrated for miR-122 nor 5' end annealing or 3' overhanging nucleotides. Replication promotion by perfect-match siRNAs was observed in Ago2 knockout cells revealing that other Ago isoforms can support HCV replication. At last, we present a model for miR-122 promotion of the HCV life cycle in which miRNA annealing to the 5' UTR, in conjunction with any Ago isoform, modifies the 5' UTR structure to stabilize the viral genome and promote HCV RNA accumulation.


Subject(s)
5' Untranslated Regions/genetics , Hepacivirus/physiology , MicroRNAs/physiology , Mutation/physiology , Nucleic Acid Conformation , RNA, Viral , Virus Replication/physiology , Argonaute Proteins/genetics , Base Pairing/genetics , Base Sequence , Computational Biology , Gene Knockdown Techniques , Genome, Viral/genetics , Hepacivirus/genetics , Humans , RNA Stability , RNA, Viral/chemistry , RNA, Viral/genetics , Tumor Cells, Cultured
10.
Nucleic Acids Res ; 46(10): 5139-5158, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29672716

ABSTRACT

Hepatitis C virus (HCV) recruits two molecules of the liver-specific microRNA-122 (miR-122) to the 5' end of its genome. This interaction promotes viral RNA accumulation, but the precise mechanism(s) remain incompletely understood. Previous studies suggest that miR-122 is able to protect the HCV genome from 5' exonucleases (Xrn1/2), but this protection is not sufficient to account for the effect of miR-122 on HCV RNA accumulation. Thus, we investigated whether miR-122 was also able to protect the viral genome from innate sensors of RNA or cellular pyrophosphatases. We found that miR-122 does not play a protective role against recognition by PKR, RIG-I-like receptors, or IFITs 1 and 5. However, we found that knockdown of both the cellular pyrophosphatases, DOM3Z and DUSP11, was able to rescue viral RNA accumulation of subgenomic replicons in the absence of miR-122. Nevertheless, pyrophosphatase knockdown increased but did not restore viral RNA accumulation of full-length HCV RNA in miR-122 knockout cells, suggesting that miR-122 likely plays an additional role(s) in the HCV life cycle, beyond 5' end protection. Overall, our results support a model in which miR-122 stabilizes the HCV genome by shielding its 5' terminus from cellular pyrophosphatase activity and subsequent turnover by exonucleases (Xrn1/2).


Subject(s)
Dual-Specificity Phosphatases/metabolism , Hepacivirus/physiology , Host-Pathogen Interactions/genetics , MicroRNAs/metabolism , Nuclear Proteins/metabolism , Adaptor Proteins, Signal Transducing , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Dual-Specificity Phosphatases/genetics , Exoribonucleases/genetics , Exoribonucleases/metabolism , Genome, Viral , Hepacivirus/genetics , Humans , MicroRNAs/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/genetics , RNA Stability , RNA, Viral/metabolism , RNA-Binding Proteins , Virus Replication/genetics , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
11.
Can J Gastroenterol Hepatol ; 2016: 5743521, 2016.
Article in English | MEDLINE | ID: mdl-27446849

ABSTRACT

Hepatitis C virus (HCV) affects at least 268,000 Canadians and causes greater disease burden than any other infectious disease in the country. The Canadian Institutes of Health Research (CIHR) and the Public Health Agency of Canada (PHAC) have identified HCV-related liver disease as a priority. In 2015, the release of well-tolerated, short course treatments (~12 weeks) able to cure the majority of treated HCV patients revolutionized HCV therapy. However, treatment is extremely costly and puts a significant burden on the Canadian healthcare system. Thus, managing treatment costs and improving treatment engagement in those most in need will be a key challenge. Diagnosis and treatment uptake are currently poor in Canada due to financial, geographical, cultural, and social barriers. The United States, Australia, and Scotland all have National Action Plans to prevent, diagnose, and treat HCV in order to efficiently reduce the burden and costs associated with HCV-related liver disease. The theme of the 4th annual symposium held on Feb 27, 2015, "Strategies to Manage HCV Infection in Canada: Moving towards a National Action Plan," was aimed at identifying strategies to maximize the impact of highly effective therapies to reduce HCV disease burden and ultimately eliminate HCV in Canada.


Subject(s)
Health Policy , Hepatitis C , Antiviral Agents/therapeutic use , Canada , Cost of Illness , Humans
13.
J Virol ; 89(12): 6294-311, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25855736

ABSTRACT

UNLABELLED: miR-122 is a liver-specific microRNA (miRNA) that binds to two sites (S1 and S2) on the 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome and promotes the viral life cycle. It positively affects viral RNA stability, translation, and replication, but the mechanism is not well understood. To unravel the roles of miR-122 binding at each site alone or in combination, we employed miR-122 binding site mutant viral RNAs, Hep3B cells (which lack detectable miR-122), and complementation with wild-type miR-122, an miR-122 with the matching mutation, or both. We found that miR-122 binding at either site alone increased replication equally, while binding at both sites had a cooperative effect. Xrn1 depletion rescued miR-122-unbound full-length RNA replication to detectable levels but not to miR-122-bound levels, confirming that miR-122 protects HCV RNA from Xrn1, a cytoplasmic 5'-to-3' exoribonuclease, but also has additional functions. In cells depleted of Xrn1, replication levels of S1-bound HCV RNA were slightly higher than S2-bound RNA levels, suggesting that both sites contribute, but their contributions may be unequal when the need for protection from Xrn1 is reduced. miR-122 binding at S1 or S2 also increased translation equally, but the effect was abolished by Xrn1 knockdown, suggesting that the influence of miR-122 on HCV translation reflects protection from Xrn1 degradation. Our results show that occupation of each miR-122 binding site contributes equally and cooperatively to HCV replication but suggest somewhat unequal contributions of each site to Xrn1 protection and additional functions of miR-122. IMPORTANCE: The functions of miR-122 in the promotion of the HCV life cycle are not fully understood. Here, we show that binding of miR-122 to each of the two binding sites in the HCV 5' UTR contributes equally to HCV replication and that binding to both sites can function cooperatively. This suggests that active Ago2-miR-122 complexes assemble at each site and can cooperatively promote the association and/or function of adjacent complexes, similar to what has been proposed for translation suppression by adjacent miRNA binding sites. We also confirm a role for miR-122 in protection from Xrn1 and provide evidence that miR-122 has additional functions in the HCV life cycle unrelated to Xrn1. Finally, we show that each binding site may contribute unequally to Xrn1 protection and other miR-122 functions.


Subject(s)
5' Untranslated Regions , Exoribonucleases/metabolism , Hepacivirus/physiology , Host-Pathogen Interactions , MicroRNAs/metabolism , Microtubule-Associated Proteins/metabolism , RNA, Viral/metabolism , Virus Replication , Cell Line , Hepatocytes/virology , Humans , Protein Binding , Protein Biosynthesis , RNA Stability
14.
Curr Opin Virol ; 7: 11-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24721497

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that function as part of RNA-induced silencing complexes that repress the expression of target genes. Over the past few years, miRNAs have been found to mediate complex regulation of a wide variety of mammalian viral infections, including Hepatitis C virus (HCV) infection. Here, we focus on a highly abundant, liver-specific miRNA, miR-122. In a unique and unusual interaction, miR-122 binds to two sites in the 5' untranslated region (UTR) of the HCV genome and promotes viral RNA accumulation. We will discuss what has been learned about this important interaction to date, provide insights into how miR-122 is able to modulate HCV RNA accumulation, and how miR-122 might be exploited for antiviral intervention.


Subject(s)
Hepacivirus/physiology , Hepatitis C/genetics , Hepatitis C/virology , MicroRNAs/genetics , 5' Untranslated Regions , Animals , Hepacivirus/genetics , Hepatitis C/metabolism , Humans , MicroRNAs/metabolism
15.
PLoS One ; 9(2): e89971, 2014.
Article in English | MEDLINE | ID: mdl-24587159

ABSTRACT

Hepatitis C Virus (HCV) is a serious global health problem, infecting almost 3% of the world's population. The lack of model systems for studying this virus limit research options in vaccine and therapeutic development, as well as for studying the pathogenesis of chronic HCV infection. Herein we make use of the liver-specific microRNA miR-122 to render mouse cell lines permissive to HCV replication in an attempt to develop additional model systems for the identification of new features of the virus and its life cycle. We have determined that some wild-type and knockout mouse cell lines--NCoA6 and PKR knockout embryonic fibroblasts--can be rendered permissive to transient HCV sub-genomic RNA replication upon addition of miR-122, but we did not observe replication of full-length HCV RNA in these cells. However, other wild-type and knockout cell lines cannot be rendered permissive to HCV replication by addition of miR-122, and in fact, different NCoA6 and PKR knockout cell line passages and isolates from the same mice demonstrated varying permissiveness phenotypes and eventually complete loss of permissiveness. When we tested knockdown of NCoA6 and PKR in Huh7.5 cells, we saw no substantial impact in sub-genomic HCV replication, which we would expect if these genes were inhibitory to the virus' life cycle. This leads us to conclude that along with the influence of specific gene knockouts there are additional factors within the cell lines that affect their permissiveness for HCV replication; we suggest that these may be epigenetically regulated, or modulated by cell line immortalization and transformation.


Subject(s)
Cell Line , Genome, Viral/genetics , Hepacivirus/genetics , Hepacivirus/physiology , MicroRNAs/genetics , RNA, Viral/genetics , Virus Replication , Animals , Cell Culture Techniques , Cell Transformation, Viral , Epigenesis, Genetic , Gene Knockout Techniques , Liver/metabolism , Mice , Nuclear Receptor Coactivators/deficiency , Nuclear Receptor Coactivators/genetics , Phenotype , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics
16.
Can J Gastroenterol ; 27(11): 627-32, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24199209

ABSTRACT

In Canada, hepatitis C virus (HCV) infection results in considerable morbidity, mortality and health-related costs. Within the next three to 10 years, it is expected that tolerable, short-duration (12 to 24 weeks) therapies capable of curing >90% of those who undergo treatment will be approved. Given that most of those already infected are aging and at risk for progressive liver disease, building research-based interdisciplinary prevention, care and treatment capacity is an urgent priority. In an effort to increase the dissemination of knowledge in Canada in this rapidly advancing field, the National CIHR Research Training Program in Hepatitis C (NCRTP-HepC) established an annual interdisciplinary Canadian Symposium on Hepatitis C Virus. The first symposium was held in Montreal, Quebec, in 2012, and the second symposium was held in Victoria, British Columbia, in 2013. The current article presents highlights from the 2013 meeting. It summarizes recent advances in HCV research in Canada and internationally, and presents the consensus of the meeting participants that Canada would benefit from having its own national HCV strategy to identify critical gaps in policies and programs to more effectively address the challenges of expanding HCV screening and treatment.


Subject(s)
Antiviral Agents/therapeutic use , Hepatitis C/drug therapy , Mass Screening/methods , Antiviral Agents/administration & dosage , Canada/epidemiology , Health Policy , Hepatitis C/diagnosis , Hepatitis C/epidemiology , Humans , Public Health
17.
Wiley Interdiscip Rev RNA ; 4(6): 665-76, 2013.
Article in English | MEDLINE | ID: mdl-23881584

ABSTRACT

The unusual role for miR-122 in promoting the hepatitis C virus (HCV) life cycle was first identified in 2005, but its mechanism of action remains uncharacterized. The virus appears to use the microRNA (miRNA) in a way that is opposed to that of normal miRNAs. Instead of interacting with sequences in the 3'-untranslated region (UTR), miR-122 binds to two sites in the 5'-UTR, and instead of silencing gene expression or promoting the degradation of the viral RNA, it stabilizes the genome and potently augments the efficiency by which HCV RNA accumulates in infected cells. This review discusses the current knowledge and models for the mechanism by which miR-122 promotes the HCV life cycle. Annealing of miR-122 to the HCV genome requires particular base pairing, stimulates translation, and stabilizes the viral genome by blocking degradation by host exonucleases, but these functions are unlikely to be the whole story. We will discuss other possible functions for miR-122, the stages of the HCV life cycle at which miR-122 may influence HCV, and other related viruses that may be similarly regulated by miR-122. Despite our lack of detailed mechanistic information, antagonism of miR-122 is emerging as a powerful method to inhibit HCV infections, and unique to other HCV treatment strategies does not, thus far, appear to induce emergence of escape mutants. Used alone or in combination with other antiviral drugs, miR-122 antagonists could be useful to both inhibit the virus and provide selective pressure to inhibit the development of resistance.


Subject(s)
Argonaute Proteins/genetics , Hepacivirus/genetics , MicroRNAs/genetics , Animals , Genome, Viral , Hepacivirus/pathogenicity , Humans , Life Cycle Stages/genetics , Nucleic Acid Conformation , Protein Biosynthesis , Virus Replication
18.
PLoS One ; 8(6): e67437, 2013.
Article in English | MEDLINE | ID: mdl-23826300

ABSTRACT

DDX6 and other P-body proteins are required for efficient replication of Hepatitis C Virus (HCV) by unknown mechanisms. DDX6 has been implicated in miRNA induced gene silencing, and since efficient HCV replication and translation relies on the cellular microRNA, miR-122, we hypothesized that DDX6 had a role in the mechanism of action of miR-122. However, by using multiple HCV translation and replication assays we have found this is not the case. DDX6 silencing decreased HCV replication and translation, but did not affect the ability of miR-122 to stimulate HCV translation or promote HCV RNA accumulation. In addition, the negative effect of DDX6 silencing on HCV replication and translation was not dependent on miR-122 association with the HCV genome. Thus, DDX6 does not have a role in the activity of miR-122, and it appears that DDX6 and miR-122 modulate HCV through distinct pathways. This effect was seen in both Huh7.5 cells and in Hep3B cells, indicating that the effects are not cell type specific. Since infections by other viruses in the Flaviviridae family, including Dengue and West Nile Virus, also disrupt P-bodies and are regulated by DDX6, we speculate that DDX6 may have a common function that support the replication of several Flaviviruses.


Subject(s)
DEAD-box RNA Helicases/metabolism , Hepacivirus/genetics , MicroRNAs/metabolism , Protein Biosynthesis , Proto-Oncogene Proteins/metabolism , RNA, Viral/genetics , Base Sequence , Cell Line, Tumor , Cytoplasmic Structures/metabolism , Gene Knockdown Techniques , Gene Silencing , Genome, Viral/genetics , Humans , MicroRNAs/genetics , Molecular Sequence Data , RNA, Small Interfering/metabolism , Replicon/genetics , Virus Replication/genetics
19.
J Virol ; 87(13): 7338-47, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23616647

ABSTRACT

Hepatitis C virus (HCV) RNA forms an unusual interaction with human microRNA-122 (miR-122) that promotes viral RNA accumulation in cultured human liver cells and in the livers of infected chimpanzees. GB virus B (GBV-B) is a hepatotropic virus and close relative of HCV. Thus, GBV-B has been used as a surrogate system to study HCV amplification in cultured cells and in infected tamarins. It was discovered that the 5'-terminal sequences of GBV-B RNA, like HCV RNA, forms an Argonaute 2-mediated complex with two miR-122 molecules that are essential for accumulation of GBV-B subgenomic replicon RNA. However, sequences in miR-122 that anneal to each viral RNA genome were different, suggesting distinct overall structural features in HCV:miR-122 and GBV-B:miR-122 complexes. Surprisingly, a deletion that removed both miR-122 binding sites from the subgenomic GBV-B RNAs rendered viral RNA amplification independent from miR-122 and Argonaute 2. This finding suggests that structural features at the end of the viral genome dictate whether miR-122 is required to aid in maintaining viral RNA abundance.


Subject(s)
Argonaute Proteins/metabolism , GB virus B/genetics , Gene Expression Regulation, Viral/physiology , MicroRNAs/metabolism , RNA, Viral/metabolism , Blotting, Northern , Cell Line, Tumor , DNA Primers/genetics , GB virus B/metabolism , Hepacivirus/genetics , Hepacivirus/metabolism , Humans , Luciferases , Mutagenesis , Plasmids/genetics , Real-Time Polymerase Chain Reaction , Replicon/genetics , Transfection
20.
Pharmacol Res ; 75: 48-59, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23541631

ABSTRACT

Hepatitis C Virus (HCV) infection-induced liver disease is a growing problem worldwide, and is the primary cause of liver failure requiring liver transplantation in North America. Improved therapeutic strategies are required to control and possibly eradicate HCV infections, and to modulate HCV-induced liver disease. Cellular microRNAs anneal to and regulate mRNA translation and stability and form a regulatory network that modulates virtually every cellular process. Thus, miRNAs are promising cellular targets for therapeutic intervention for an array of diseases including cancer, metabolic diseases, and virus infections. In this review we outline the features of miRNA regulation and how miRNAs may be targeted in strategies to modulate HCV replication and pathogenesis. In particular, we highlight miR-122, a miRNA that directly modulates the HCV life cycle using an unusual mechanism. This miRNA is very important since miR-122 antagonists dramatically reduced HCV titres in HCV-infected chimpanzees and humans and currently represents the most likely candidate to be the first miRNA-based therapy licensed for use. However, we also discuss other miRNAs that directly or indirectly alter HCV replication efficiency, liver cirrhosis, fibrosis and the development of hepatocellular carcinoma (HCC). We also discuss a few miRNAs that might be targets to treat HCV in cases of HCV/HIV co-infection. Finally, we review methods to deliver miRNA antagonists and mimics to the liver. In the future, it may be possible to design and deliver specific combinations of miRNA antagonists and mimics to cure HCV infection or to limit liver pathogenesis.


Subject(s)
Gene Targeting/methods , Hepacivirus/physiology , Hepatitis C/therapy , Host-Pathogen Interactions/genetics , Liver/pathology , MicroRNAs/genetics , Gene Expression Regulation , Hepacivirus/growth & development , Hepatitis C/genetics , Hepatitis C/pathology , Hepatitis C/virology , Humans , Liver/metabolism , Liver/virology , MicroRNAs/antagonists & inhibitors , MicroRNAs/biosynthesis , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...