Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nat Immunol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745086
2.
Microbiol Mol Biol Rev ; : e0009523, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506551

ABSTRACT

SUMMARYThe genus Streptococcus consists of a taxonomically diverse group of Gram-positive bacteria that have earned significant scientific interest due to their physiological and pathogenic characteristics. Within the genus Streptococcus, viridans group streptococci (VGS) play a significant role in the oral ecosystem, constituting approximately 80% of the oral biofilm. Their primary role as pioneering colonizers in the oral cavity with multifaceted interactions like adherence, metabolic signaling, and quorum sensing contributes significantly to the complex dynamics of the oral biofilm, thus shaping oral health and disease outcomes. Perturbations in oral streptococci composition drive oral dysbiosis and therefore impact host-pathogen interactions, resulting in oral inflammation and representing VGS as an opportunistic pathogen. The association of oral streptococci in tumors across distant organs, spanning the esophagus, stomach, pancreas, and colon, illuminates a potential association between oral streptococci, inflammation, and tumorigenesis. This finding emphasizes the need for further investigations into the role of oral streptococci in mucosal homeostasis and their involvement in carcinogenesis. Hence, here, we review the significance of oral streptococci in biofilm dynamics and how the perturbation may impact mucosal immunopathogenesis in the context of cancer, with a vision of exploiting oral streptococci for cancer intervention and for the development of non-invasive cancer diagnosis.

3.
Infect Immun ; 92(3): e0053623, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38289109

ABSTRACT

Oral streptococci, key players in oral biofilm formation, are implicated in oral dysbiosis and various clinical conditions, including dental caries, gingivitis, periodontal disease, and oral cancer. Specifically, Streptococcus anginosus is associated with esophageal, gastric, and pharyngeal cancers, while Streptococcus mitis is linked to oral cancer. However, no study has investigated the mechanistic links between these Streptococcus species and cancer-related inflammatory responses. As an initial step, we probed the innate immune response triggered by S. anginosus and S. mitis in RAW264.7 macrophages. These bacteria exerted time- and dose-dependent effects on macrophage morphology without affecting cell viability. Compared with untreated macrophages, macrophages infected with S. anginosus exhibited a robust proinflammatory response characterized by significantly increased levels of inflammatory cytokines and mediators, including TNF, IL-6, IL-1ß, NOS2, and COX2, accompanied by enhanced NF-κB activation. In contrast, S. mitis-infected macrophages failed to elicit a robust inflammatory response. Seahorse Xfe96 analysis revealed an increased extracellular acidification rate in macrophages infected with S. anginosus compared with S. mitis. At the 24-h time point, the presence of S. anginosus led to reduced extracellular itaconate, while S. mitis triggered increased itaconate levels, highlighting distinct metabolic profiles in macrophages during infection in contrast to aconitate decarboxylase expression observed at the 6-h time point. This initial investigation highlights how S. anginosus and S. mitis, two Gram-positive bacteria from the same genus, can prompt distinct immune responses and metabolic shifts in macrophages during infection.IMPORTANCEThe surge in head and neck cancer cases among individuals devoid of typical risk factors such as Human Papilloma Virus (HPV) infection and tobacco and alcohol use sparks an argumentative discussion around the emerging role of oral microbiota as a novel risk factor in oral squamous cell carcinoma (OSCC). While substantial research has dissected the gut microbiome's influence on physiology, the oral microbiome, notably oral streptococci, has been underappreciated during mucosal immunopathogenesis. Streptococcus anginosus, a viridans streptococci group, has been linked to abscess formation and an elevated presence in esophageal cancer and OSCC. The current study aims to probe the innate immune response to S. anginosus compared with the early colonizer Streptococcus mitis as an important first step toward understanding the impact of distinct oral Streptococcus species on the host immune response, which is an understudied determinant of OSCC development and progression.


Subject(s)
Carcinoma, Squamous Cell , Dental Caries , Mouth Neoplasms , Succinates , Humans , Streptococcus anginosus , Carcinoma, Squamous Cell/microbiology , Streptococcus , Macrophages
4.
Nat Biomed Eng ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049469

ABSTRACT

As a chronic autoinflammatory condition, ulcerative colitis is often managed via systemic immunosuppressants. Here we show, in three mouse models of established ulcerative colitis, that a subcutaneously injected colon-specific immunosuppressive niche consisting of colon epithelial cells, decellularized colon extracellular matrix and nanofibres functionalized with programmed death-ligand 1, CD86, a peptide mimic of transforming growth factor-beta 1, and the immunosuppressive small-molecule leflunomide, induced intestinal immunotolerance and reduced inflammation in the animals' lower gastrointestinal tract. The bioengineered colon-specific niche triggered autoreactive T cell anergy and polarized pro-inflammatory macrophages via multiple immunosuppressive pathways, and prevented the infiltration of immune cells into the colon's lamina propria, promoting the recovery of epithelial damage. The bioengineered niche also prevented colitis-associated colorectal cancer and eliminated immune-related colitis triggered by kinase inhibitors and immune checkpoint blockade.

5.
J Periodontol ; 93(9): 1366-1377, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35404474

ABSTRACT

BACKGROUND: Periodontal destruction can be the result of different known and yet-to-be-discovered biological pathways. Recent human genetic association studies have implicated interferon-gamma inducible protein 16 (IFI16) and absent in melanoma 2 (AIM2) with high periodontal interleukin (IL)-1ß levels and more destructive disease, but mechanistic evidence is lacking. Here, we sought to experimentally validate these observational associations and better understand IFI16 and AIM2's roles in periodontitis. METHODS: Periodontitis was induced in Ifi204-/- (IFI16 murine homolog) and Aim2-/- mice using the ligature model. Chimeric mice were created to identify the main source cells of Ifi204 in the periodontium. IFI16-silenced human endothelial cells were treated with periodontal pathogens in vitro. Periodontal tissues from Ifi204-/- mice were evaluated for alveolar bone (micro-CT), cell inflammatory infiltration (MPO+ staining), Il1b (qRT-PCR), and osteoclast numbers (cathepsin K+ staining). RESULTS: Ifi204-deficient mice> exhibited >20% higher alveolar bone loss than wild-type (WT) (P < 0.05), while no significant difference was found in Aim2-/- mice. Ifi204's effect on bone loss was primarily mediated by a nonbone marrow source and was independent of Aim2. Ifi204-deficient mice had greater neutrophil/macrophage trafficking into gingival tissues regardless of periodontitis development compared to WT. In human endothelial cells, IFI16 decreased the chemokine response to periodontal pathogens. In murine periodontitis, Ifi204 depletion elevated gingival Il1b and increased osteoclast numbers at diseased sites (P < 0.05). CONCLUSIONS: These findings support IFI16's role as a novel regulator of inflammatory cell trafficking to the periodontium that protects against bone loss and offers potential targets for the development of new periodontal disease biomarkers and therapeutics.


Subject(s)
Alveolar Bone Loss , Nuclear Proteins , Periodontitis , Phosphoproteins , Alveolar Bone Loss/genetics , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/prevention & control , Animals , Biomarkers/metabolism , Cathepsin K , Disease Models, Animal , Endothelial Cells/metabolism , Interferon-gamma/metabolism , Interferons/metabolism , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Periodontitis/genetics , Periodontitis/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism
6.
Immunohorizons ; 6(2): 130-143, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149520

ABSTRACT

STAT4 plays a critical role in the generation of both innate and adaptive immune responses. In the absence of STAT4, Th1 responses, critical for resistance to fungal disease, do not occur. Infection with the dimorphic fungus, Coccidioides, is a major cause of community-acquired pneumonia in the endemic regions of Arizona and California. In some people and often for unknown reasons, coccidioidal infection results in hematogenous dissemination and progressive disease rather than the typical self-limited pneumonia. Members of three generations in a family developed disseminated coccidioidomycosis, prompting genetic investigation. All affected family members had a single heterozygous base change in STAT4, c.1877A>G, causing substitution of glycine for glutamate at AA626 (STAT4E626G/+ ). A knockin mouse, heterozygous for the substitution, developed more severe experimental coccidioidomycosis than did wild-type mice. Stat4E626G/+ T cells were deficient in production of IFN-γ after anti-CD3/CD28 stimulation. Spleen cells from Stat4E626G mice showed defective responses to IL-12/IL-18 stimulation in vitro. In vivo, early postinfection, mutant Stat4E626G/+ mice failed to produce IFN-γ and related cytokines in the lung and to accumulate activated adaptive immune cells in mediastinal lymph nodes. Therefore, defective early induction of IFN-γ and adaptive responses by STAT4 prevents normal control of coccidioidomycosis in both mice and humans.


Subject(s)
Coccidioidomycosis , STAT4 Transcription Factor , Animals , Coccidioidomycosis/genetics , Genetic Predisposition to Disease , Humans , Mice , Mice, Inbred BALB C , Mice, Knockout , Point Mutation , STAT4 Transcription Factor/genetics
7.
J Clin Invest ; 129(9): 3702-3716, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31211700

ABSTRACT

Resident microbiota activate regulatory cells that modulate intestinal inflammation and promote and maintain intestinal homeostasis. IL-10 is a key mediator of immune regulatory function. Our studies described the functional importance and mechanisms by which gut microbiota and specific microbial components influenced the development of intestinal IL-10-producing B cells. We used fecal transplant to germ-free (GF) Il10+/EGFP reporter and Il10-/- mice to demonstrate that microbiota from specific pathogen-free mice primarily stimulated IL-10-producing colon-specific B cells and T regulatory-1 cells in ex-GF mice. IL-10 in turn down-regulated microbiota-activated mucosal inflammatory cytokines. TLR2/9 ligands and enteric bacterial lysates preferentially induced IL-10 production and regulatory capacity of intestinal B cells. Analysis of Il10+/EGFP mice crossed with additional gene-deficient strains and B cell co-transfer studies demonstrated that microbiota-induced IL-10-producing intestinal B cells ameliorated chronic T cell-mediated colitis in a TLR2, MyD88 and PI3K-dependent fashion. In vitro studies implicated PI3Kp110δ and AKT downstream signaling. These studies demonstrated that resident enteric bacteria activated intestinal IL-10-producing B cells through TLR2, MyD88 and PI3K pathways. These B cells reduced colonic T cell activation and maintained mucosal homeostasis in response to intestinal microbiota.


Subject(s)
B-Lymphocytes, Regulatory/microbiology , Gastrointestinal Microbiome , Interleukin-10/metabolism , Myeloid Differentiation Factor 88/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Toll-Like Receptor 2/metabolism , Animals , B-Lymphocytes, Regulatory/immunology , Colitis/microbiology , Cytokines/metabolism , Down-Regulation , Fecal Microbiota Transplantation , Germ-Free Life , Green Fluorescent Proteins/metabolism , Immunity, Innate , Inflammation , Intestines/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Toll-Like Receptor 9/metabolism
8.
Immunity ; 49(6): 1049-1061.e6, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30566882

ABSTRACT

Appropriate immune responses require a fine balance between immune activation and attenuation. NLRC3, a non-inflammasome-forming member of the NLR innate immune receptor family, attenuates inflammation in myeloid cells and proliferation in epithelial cells. T lymphocytes express the highest amounts of Nlrc3 transcript where its physiologic relevance is unknown. We show that NLRC3 attenuated interferon-γ and TNF expression by CD4+ T cells and reduced T helper 1 (Th1) and Th17 cell proliferation. Nlrc3-/- mice exhibited increased and prolonged CD4+ T cell responses to lymphocytic choriomeningitis virus infection and worsened experimental autoimmune encephalomyelitis (EAE). These functions of NLRC3 were executed in a T-cell-intrinsic fashion: NLRC3 reduced K63-linked ubiquitination of TNF-receptor-associated factor 6 (TRAF6) to limit NF-κB activation, lowered phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), and diminished glycolysis and oxidative phosphorylation. This study reveals an unappreciated role for NLRC3 in attenuating CD4+ T cell signaling and metabolism.


Subject(s)
Autoimmunity/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Immunity, Innate/immunology , Intercellular Signaling Peptides and Proteins/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Adaptor Proteins, Signal Transducing , Animals , Autoimmunity/genetics , Carrier Proteins/genetics , Carrier Proteins/immunology , Carrier Proteins/metabolism , Cell Cycle Proteins , Encephalomyelitis, Autoimmune, Experimental/genetics , Eukaryotic Initiation Factors , Humans , Immunity, Innate/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/microbiology , Lymphocytic choriomeningitis virus/physiology , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/immunology , NF-kappa B/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/immunology , TNF Receptor-Associated Factor 6/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
9.
Cell Host Microbe ; 24(3): 364-378.e6, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30212649

ABSTRACT

In addition to high-fat diet (HFD) and inactivity, inflammation and microbiota composition contribute to obesity. Inhibitory immune receptors, such as NLRP12, dampen inflammation and are important for resolving inflammation, but their role in obesity is unknown. We show that obesity in humans correlates with reduced expression of adipose tissue NLRP12. Similarly, Nlrp12-/- mice show increased weight gain, adipose deposition, blood glucose, NF-κB/MAPK activation, and M1-macrophage polarization. Additionally, NLRP12 is required to mitigate HFD-induced inflammasome activation. Co-housing with wild-type animals, antibiotic treatment, or germ-free condition was sufficient to restrain inflammation, obesity, and insulin tolerance in Nlrp12-/- mice, implicating the microbiota. HFD-fed Nlrp12-/- mice display dysbiosis marked by increased obesity-associated Erysipelotrichaceae, but reduced Lachnospiraceae family and the associated enzymes required for short-chain fatty acid (SCFA) synthesis. Lachnospiraceae or SCFA administration attenuates obesity, inflammation, and dysbiosis. These findings reveal that Nlrp12 reduces HFD-induced obesity by maintaining beneficial microbiota.


Subject(s)
Gastrointestinal Microbiome , Intracellular Signaling Peptides and Proteins/immunology , Obesity/immunology , Obesity/microbiology , Adipose Tissue/immunology , Adult , Aged , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Female , Homeostasis , Humans , Immunity, Innate , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Obesity/genetics , Obesity/metabolism
12.
J Clin Invest ; 127(5): 1813-1825, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28375154

ABSTRACT

Acute graft-versus-host disease (aGVHD) is the most common complication for patients undergoing allogeneic stem cell transplantation. Despite extremely aggressive therapy targeting donor T cells, patients with grade III or greater aGVHD of the lower GI tract, who do not respond to therapy with corticosteroids, have a dismal prognosis. Thus, efforts to improve understanding of the function of local immune and non-immune cells in regulating the inflammatory process in the GI tract during aGVHD are needed. Here, we demonstrate, using murine models of allogeneic BMT, that type 2 innate lymphoid cells (ILC2s) in the lower GI tract are sensitive to conditioning therapy and show very limited ability to repopulate from donor bone marrow. Infusion of donor ILC2s was effective in reducing the lethality of aGVHD and in treating lower GI tract disease. ILC2 infusion was associated with reduced donor proinflammatory Th1 and Th17 cells, accumulation of donor myeloid-derived suppressor cells (MDSCs) mediated by ILC2 production of IL-13, improved GI tract barrier function, and a preserved graft-versus-leukemia (GVL) response. Collectively, these findings suggest that infusion of donor ILC2s to restore gastrointestinal tract homeostasis may improve treatment of severe lower GI tract aGVHD.


Subject(s)
Bone Marrow Transplantation , Gastrointestinal Diseases/immunology , Gastrointestinal Diseases/therapy , Graft vs Host Disease/immunology , Graft vs Host Disease/therapy , Lymphocytes/immunology , Acute Disease , Allografts , Animals , Gastrointestinal Diseases/pathology , Graft vs Host Disease/pathology , Lymphocytes/pathology , Mice , Mice, Knockout , Myeloid Cells/immunology , Myeloid Cells/pathology
13.
Nat Immunol ; 18(5): 541-551, 2017 05.
Article in English | MEDLINE | ID: mdl-28288099

ABSTRACT

Inflammatory bowel diseases involve the dynamic interaction of host genetics, the microbiome and inflammatory responses. Here we found lower expression of NLRP12 (which encodes a negative regulator of innate immunity) in human ulcerative colitis, by comparing monozygotic twins and other patient cohorts. In parallel, Nlrp12 deficiency in mice caused increased basal colonic inflammation, which led to a less-diverse microbiome and loss of protective gut commensal strains (of the family Lachnospiraceae) and a greater abundance of colitogenic strains (of the family Erysipelotrichaceae). Dysbiosis and susceptibility to colitis associated with Nlrp12 deficency were reversed equally by treatment with antibodies targeting inflammatory cytokines and by the administration of beneficial commensal Lachnospiraceae isolates. Fecal transplants from mice reared in specific-pathogen-free conditions into germ-free Nlrp12-deficient mice showed that NLRP12 and the microbiome each contributed to immunological signaling that culminated in colon inflammation. These findings reveal a feed-forward loop in which NLRP12 promotes specific commensals that can reverse gut inflammation, while cytokine blockade during NLRP12 deficiency can reverse dysbiosis.


Subject(s)
Clostridiales/physiology , Colitis, Ulcerative/immunology , Colon/physiology , Firmicutes/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Microbiota , RNA, Ribosomal, 16S/analysis , Animals , Biodiversity , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/microbiology , Colon/microbiology , Dextran Sulfate , Feces/microbiology , Gene-Environment Interaction , Humans , Immunity, Innate/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota/genetics , Microbiota/immunology , Symbiosis , Twins, Monozygotic
14.
Science ; 353(6307): 1541-1545, 2016 09 30.
Article in English | MEDLINE | ID: mdl-27633528

ABSTRACT

Hepatotropic viruses are important causes of human disease, but the intrahepatic immune response to hepatitis viruses is poorly understood because of a lack of tractable small- animal models. We describe a murine model of hepatitis A virus (HAV) infection that recapitulates critical features of type A hepatitis in humans. We demonstrate that the capacity of HAV to evade MAVS-mediated type I interferon responses defines its host species range. HAV-induced liver injury was associated with interferon-independent intrinsic hepatocellular apoptosis and hepatic inflammation that unexpectedly resulted from MAVS and IRF3/7 signaling. This murine model thus reveals a previously undefined link between innate immune responses to virus infection and acute liver injury, providing a new paradigm for viral pathogenesis in the liver.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Disease Models, Animal , Hepatitis A virus/immunology , Hepatitis A/immunology , Host-Pathogen Interactions/immunology , Liver/immunology , Mice , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis , Hepatitis A/pathology , Hepatitis A/virology , Hepatocytes/immunology , Hepatocytes/pathology , Hepatocytes/virology , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/immunology , Interferon Type I/immunology , Liver/pathology , Liver/virology , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/immunology , Receptors, Interferon/genetics , Receptors, Interferon/immunology , Signal Transduction/immunology , Species Specificity , Interferon gamma Receptor
15.
Oncotarget ; 7(22): 33096-110, 2016 May 31.
Article in English | MEDLINE | ID: mdl-27105514

ABSTRACT

Histiocytic sarcoma is an uncommon malignancy in both humans and veterinary species. Research exploring the pathogenesis of this disease is scarce; thus, diagnostic and therapeutic options for patients are limited. Recent publications have suggested a role for the NLR, NLRX1, in acting as a tumor suppressor. Based on these prior findings, we hypothesized that NLRX1 would function to inhibit tumorigenesis and thus the development of histiocytic sarcoma. To test this, we utilized Nlrx1-/- mice and a model of urethane-induced tumorigenesis. Nlrx1-/- mice exposed to urethane developed splenic histiocytic sarcoma that was associated with significant up-regulation of the NF-κB signaling pathway. Additionally, development of these tumors was also significantly associated with the increased regulation of genes associated with AKT signaling, cell death and autophagy. Together, these data show that NLRX1 suppresses tumorigenesis and reveals new genetic pathways involved in the pathobiology of histiocytic sarcoma.


Subject(s)
Histiocytic Sarcoma/metabolism , Mitochondrial Proteins/metabolism , NF-kappa B/metabolism , Animals , Carcinogenesis , Disease Models, Animal , Female , Histiocytic Sarcoma/genetics , Histiocytic Sarcoma/pathology , Humans , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/genetics , NF-kappa B/genetics , Signal Transduction
16.
Cell Rep ; 14(11): 2562-75, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26971998

ABSTRACT

NOD-like receptor (NLR) proteins are intracellular innate immune sensors/receptors that regulate immunity. This work shows that NLRX1 serves as a tumor suppressor in colitis-associated cancer (CAC) and sporadic colon cancer by keeping key tumor promoting pathways in check. Nlrx1(-/-) mice were highly susceptible to CAC, showing increases in key cancer-promoting pathways including nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), and interleukin 6 (IL-6). The tumor-suppressive function of NLRX1 originated primarily from the non-hematopoietic compartment. This prompted an analysis of NLRX1 function in the Apc(min/+) genetic model of sporadic gastrointestinal cancer. NLRX1 attenuated Apc(min/+) colon tumorigenesis, cellular proliferation, NF-κB, MAPK, STAT3 activation, and IL-6 levels. Application of anti-interleukin 6 receptor (IL6R) antibody therapy reduced tumor burden, increased survival, and reduced STAT3 activation in Nlrx1(-/-)Apc(min/+) mice. As an important clinical correlate, human colon cancer samples expressed lower levels of NLRX1 than healthy controls in multiple patient cohorts. These data implicate anti-IL6R as a potential personalized therapy for colon cancers with reduced NLRX1.


Subject(s)
Mitochondrial Proteins/metabolism , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Animals , Antibodies, Monoclonal, Humanized/therapeutic use , Azoxymethane/toxicity , Biomarkers, Tumor/metabolism , Carcinogenesis , Colon/pathology , Colonic Neoplasms/chemically induced , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Dextran Sulfate/toxicity , Disease Models, Animal , Humans , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Real-Time Polymerase Chain Reaction , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
17.
Proc Natl Acad Sci U S A ; 112(33): 10455-60, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26240332

ABSTRACT

The alternative or noncanonical nuclear factor kappa B (NF-κB) pathway regulates the osteoclast (OC) response to receptor activator of nuclear factor kappa B ligand (RANKL) and thus bone metabolism. Although several lines of evidence support the emerging concept that nucleotide-binding leucine-rich repeat and pyrin domain-containing receptor 12 (NLRP12) impedes alternative NF-κB activation in innate immune cells, a functional role for NLRP12 outside an inflammatory disease model has yet to be reported. Our study demonstrates that NLRP12 has a protective role in bone via suppression of alternative NF-κB-induced osteoclastogenesis and is down-modulated in response to osteoclastogenic stimuli. Here, we show that retroviral overexpression of NLRP12 suppressed RelB nuclear translocation and OC formation. Conversely, genetic ablation of NLRP12 promoted NIK stabilization, RelB nuclear translocation, and increased osteoclastogenesis in vitro. Using radiation chimeras, we demonstrated these in vitro observations dovetail with our in vivo findings that NLRP12 deficiency leads to enhanced OC numbers accompanied by a significant decline in bone mass under physiological conditions. Consistent with the basal bone phenotype, we also observed an enhanced osteolytic response following RANKL injection over the calvaria of NLRP12-deficient chimeric mice compared with wild-type control mice. Thus, modulation of NLRP12 levels controls alternative NF-κB signaling in OC precursors, altering bone homeostasis and osteolytic responses.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Osteoclasts/cytology , RANK Ligand/metabolism , Active Transport, Cell Nucleus , Animals , Bone Marrow Cells/cytology , Cell Differentiation , Cytokines/metabolism , Female , Flow Cytometry , Gene Expression Regulation , Immunity, Innate , Immunoblotting , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Leucine/chemistry , Male , Mice , Mice, Inbred C57BL , NF-kappa B p50 Subunit/metabolism , Nucleotides/chemistry , Tumor Necrosis Factor-alpha/metabolism , X-Ray Microtomography
18.
Nat Med ; 21(8): 906-13, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26107252

ABSTRACT

The inflammasome activates caspase-1 and the release of interleukin-1ß (IL-1ß) and IL-18, and several inflammasomes protect against intestinal inflammation and colitis-associated colon cancer (CAC) in animal models. The absent in melanoma 2 (AIM2) inflammasome is activated by double-stranded DNA, and AIM2 expression is reduced in several types of cancer, but the mechanism by which AIM2 restricts tumor growth remains unclear. We found that Aim2-deficient mice had greater tumor load than Asc-deficient mice in the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colorectal cancer. Tumor burden was also higher in Aim2(-/-)/Apc(Min/+) than in APC(Min/+) mice. The effects of AIM2 on CAC were independent of inflammasome activation and IL-1ß and were primarily mediated by a non-bone marrow source of AIM2. In resting cells, AIM2 physically interacted with and limited activation of DNA-dependent protein kinase (DNA-PK), a PI3K-related family member that promotes Akt phosphorylation, whereas loss of AIM2 promoted DNA-PK-mediated Akt activation. AIM2 reduced Akt activation and tumor burden in colorectal cancer models, while an Akt inhibitor reduced tumor load in Aim2(-/-) mice. These findings suggest that Akt inhibitors could be used to treat AIM2-deficient human cancers.


Subject(s)
Colonic Neoplasms/prevention & control , DNA-Activated Protein Kinase/physiology , DNA-Binding Proteins/physiology , Inflammasomes/physiology , Proto-Oncogene Proteins c-akt/physiology , Animals , Colitis/complications , Female , HCT116 Cells , Humans , Intestinal Polyps/prevention & control , Male , Mice , Mice, Inbred C57BL , Phosphorylation
19.
J Biol Chem ; 289(48): 33245-57, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25271165

ABSTRACT

Inflammasomes are multi-protein complexes that regulate maturation of the interleukin 1ß-related cytokines IL-1ß and IL-18 through activation of the cysteine proteinase caspase-1. NOD-like receptor family, pyrin domain containing 3 (NLRP3) protein is a key component of inflammasomes that assemble in response to a wide variety of endogenous and pathogen-derived danger signals. Activation of the NLRP3-inflammasome and subsequent secretion of IL-1ß is highly regulated by at least three processes: transcriptional activation of both NLRP3 and pro-IL-1ß genes, non-transcriptional priming of NLRP3, and final activation of NLRP3. NLRP3 is predominantly expressed in cells of the hematopoietic lineage. Using a yeast two-hybrid screen, we identified the hematopoietic-restricted protein, G protein signaling modulator-3 (GPSM3), as a NLRP3-interacting protein and a negative regulator of IL-1ß production triggered by NLRP3-dependent inflammasome activators. In monocytes, GPSM3 associates with the C-terminal leucine-rich repeat domain of NLRP3. Bone marrow-derived macrophages lacking GPSM3 expression exhibit an increase in NLRP3-dependent IL-1ß, but not TNF-α, secretion. Furthermore, GPSM3-null mice have enhanced serum and peritoneal IL-1ß production following Alum-induced peritonitis. Our findings suggest that GPSM3 acts as a direct negative regulator of NLRP3 function.


Subject(s)
Carrier Proteins/metabolism , Guanine Nucleotide Dissociation Inhibitors/metabolism , Inflammasomes/metabolism , Adjuvants, Immunologic/adverse effects , Adjuvants, Immunologic/pharmacology , Alum Compounds/adverse effects , Alum Compounds/pharmacology , Animals , Carrier Proteins/genetics , Guanine Nucleotide Dissociation Inhibitors/genetics , HEK293 Cells , Humans , Inflammasomes/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Peritonitis/chemically induced , Peritonitis/metabolism , Peritonitis/pathology , Protein Structure, Tertiary
20.
PLoS One ; 8(4): e60842, 2013.
Article in English | MEDLINE | ID: mdl-23577168

ABSTRACT

The majority of nucleotide binding domain leucine rich repeats-containing (NLR) family members has yet to be functionally characterized. Of the described NLRs, most are considered to be proinflammatory and facilitate IL-1ß production. However, a newly defined sub-group of NLRs that function as negative regulators of inflammation have been identified based on their abilities to attenuate NF-κB signaling. NLRP12 (Monarch-1) is a prototypical member of this sub-group that negatively regulates both canonical and noncanonical NF-κB signaling in biochemical assays and in colitis and colon cancer models. The role of NLRP12 in infectious diseases has not been extensively studied. Here, we characterized the innate immune response of Nlrp12(-/-) mice following airway exposure to LPS, Klebsiella pneumoniae and Mycobacterium tuberculosis. In response to E. coli LPS, Nlrp12(-/-) mice showed a slight decrease in IL-1ß and increase in IL-6 production, but these levels were not statistically significant. During K. pneumoniae infection, we observed subtle differences in cytokine levels and significantly reduced numbers of monocytes and lymphocytes in Nlrp12(-/-) mice. However, the physiological relevance of these findings is unclear as no overt differences in the development of lung disease were observed in the Nlrp12(-/-) mice. Likewise, Nlrp12(-/-) mice demonstrated pathologies similar to those observed in the wild type mice following M. tuberculosis infection. Together, these data suggest that NLRP12 does not significantly contribute to the in vivo host innate immune response to LPS stimulation, Klebsiella pneumonia infection or Mycobacterium tuberculosis.


Subject(s)
Immunity, Innate , Intracellular Signaling Peptides and Proteins/metabolism , Klebsiella pneumoniae/physiology , Mycobacterium tuberculosis/physiology , Animals , Bone Marrow Cells/cytology , Dendritic Cells/cytology , Dendritic Cells/metabolism , Interleukin-6/metabolism , Intracellular Signaling Peptides and Proteins/deficiency , Klebsiella Infections/immunology , Klebsiella Infections/metabolism , Lung/immunology , Lung/microbiology , Mice , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...