Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Vaccine ; 28(51): 8183-8, 2010 Nov 29.
Article in English | MEDLINE | ID: mdl-20939995

ABSTRACT

The yellow fever 17D (YF-17D) vaccine is one of the most efficacious vaccines developed to date. Interestingly, vaccination with YF-17D induces IFN-γ production early after vaccination (days 5-7) before the development of classical antigen-specific CD8(+) and CD4(+) T cell responses. Here we investigated the cellular source of this early IFN-γ production. At days 5 and 7 post-vaccination activated CD8(+) gamma-delta TCR T cells produced IFN-γ and TNF-α. Activated CD4(+) T cells produced IFN-γ and TNF-α at day 7 post-vaccination. This early IFN-γ production was also induced after vaccination with recombinant YF-17D (rYF-17D), but was not observed after recombinant Adenovirus type 5 (rAd5) vaccination. Early IFN-γ production, therefore, might be an important aspect of yellow fever vaccination.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/metabolism , Receptors, Antigen, T-Cell, gamma-delta/analysis , T-Lymphocyte Subsets/immunology , Yellow Fever Vaccine/immunology , Animals , Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/chemistry , Macaca mulatta , T-Lymphocyte Subsets/chemistry , Yellow Fever Vaccine/administration & dosage
2.
Braz. j. infect. dis ; Braz. j. infect. dis;13(4): 304-310, Aug. 2009. graf
Article in English | LILACS | ID: lil-539769

ABSTRACT

The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against homologous challenges in non-human primates, the potential for reversion to a more pathogenic virus and recombination with challenge viruses will preclude the use of attenuated HIV in the field. It has been exceedingly frustrating to vaccinate for HIV-specific neutralizing antibodies given the enormous diversity of the Envelope (Env) glycoprotein and its well-developed glycan shield. However, there are several antibodies that will neutralize many different strains of HIV and inducing these types of antibodies in vaccinees remains the goal of a vigorous effort to develop a vaccine for HIV based on neutralizing antibodies. Given the difficulty in generating broadly reactive neutralizing antibodies, the HIV vaccine field has turned its attention to inducing T cell responses against the virus using a variety of vectors. Unfortunately, the results from Merck's phase IIb STEP trial proved to be disappointing. Vaccinees received Adenovirus type 5 (Ad5) expressing Gag, Pol, and Nef of HIV. This vaccine regimen failed to either prevent infection or reduce the level of HIV replication after challenge. These results mirrored those in non-human primate testing of Ad5 using rigorous SIV challenge models. This review will focus on recent developments in HIV vaccine development. We will deal largely with attempts to develop a T cell-based vaccine using the non-human primate SIV challenge model.


Subject(s)
Animals , Humans , AIDS Vaccines/immunology , Antibodies, Viral/immunology , HIV , HIV Infections/prevention & control , Viral Load/immunology , HIV Infections/immunology , Macaca mulatta , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology
3.
Braz J Infect Dis ; 13(4): 304-10, 2009 Aug.
Article in English | MEDLINE | ID: mdl-20231996

ABSTRACT

The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against homologous challenges in non-human primates, the potential for reversion to a more pathogenic virus and recombination with challenge viruses will preclude the use of attenuated HIV in the field. It has been exceedingly frustrating to vaccinate for HIV-specific neutralizing antibodies given the enormous diversity of the Envelope (Env) glycoprotein and its well-developed glycan shield. However, there are several antibodies that will neutralize many different strains of HIV and inducing these types of antibodies in vaccinees remains the goal of a vigorous effort to develop a vaccine for HIV based on neutralizing antibodies. Given the difficulty in generating broadly reactive neutralizing antibodies, the HIV vaccine field has turned its attention to inducing T cell responses against the virus using a variety of vectors. Unfortunately, the results from Merck's phase IIb STEP trial proved to be disappointing. Vaccinees received Adenovirus type 5 (Ad5) expressing Gag, Pol, and Nef of HIV. This vaccine regimen failed to either prevent infection or reduce the level of HIV replication after challenge. These results mirrored those in non-human primate testing of Ad5 using rigorous SIV challenge models. This review will focus on recent developments in HIV vaccine development. We will deal largely with attempts to develop a T cell-based vaccine using the non-human primate SIV challenge model.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Viral/immunology , HIV Infections/prevention & control , HIV/immunology , Viral Load/immunology , Animals , HIV Infections/immunology , Humans , Macaca mulatta , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL