Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 49(4): 1233-1244, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33409849

ABSTRACT

To generate physiologically-relevant experimental models, the study of enteric diarrheal diseases is turning increasingly to advanced in vitro models that combine ex vivo, stem cell-derived "organoid" cell lines with bioengineered culture environments that expose them to mechanical stimuli, such as fluid flow. However, such approaches require considerable technical expertise with both microfabrication and organoid culture, and are, therefore, inaccessible to many researchers. For this reason, we have developed a perfusion system that is simple to fabricate, operate, and maintain. Its dimensions approximate the volume and cell culture area of traditional 96-well plates and allow the incorporation of fastidious primary, stem cell-derived cell lines with only minimal adaptation of their established culture techniques. We show that infections with enteroaggregative E. coli and norovirus, common causes of infectious diarrhea, in the system display important differences from static models, and in some ways better recreate the pathophysiology of in vivo infections. Furthermore, commensal strains of bacteria can be added alongside the pathogens to simulate the effects of a host microbiome on the infectious process. For these reasons, we believe that this perfusion system is a powerful, yet easily accessible tool for studying host-pathogen interactions in the human intestine.


Subject(s)
Caliciviridae Infections , Escherichia coli Infections , Escherichia coli , Gastrointestinal Diseases , Norovirus , Organ Culture Techniques , Organoids/microbiology , Adult , Biofilms , Cells, Cultured , Escherichia coli/physiology , Escherichia coli Proteins/metabolism , Fimbriae Proteins/metabolism , Host-Pathogen Interactions , Humans , Intestine, Small/cytology , Intestine, Small/metabolism , Intestine, Small/microbiology , Mucins/metabolism , Norovirus/physiology , Organoids/metabolism , Perfusion , Stem Cells , Virulence Factors/metabolism , Virus Replication
2.
Tissue Eng Part C Methods ; 27(1): 12-23, 2021 01.
Article in English | MEDLINE | ID: mdl-33334213

ABSTRACT

Stem cell-derived, organotypic in vitro models, known as organoids, have emerged as superior alternatives to traditional cell culture models due to their unparalleled ability to recreate complex physiological and pathophysiological processes. For this reason, they are attractive targets of tissue-engineering efforts, as constructs that include organoid technology would be expected to better simulate the many functions of the desired tissue or organ. While the 3D spheroidal architecture that is the default architecture of most organoid models may be preferred for some applications, 2D monolayer arrangements remain the preferred organization for many applications in tissue engineering. Therefore, in this work, we present a method to create monolayer organoid cultures on poly(ethylene glycol) (PEG) hydrogel scaffolds, using intestinal epithelial organoids (IEOs) as a proof-of-concept. Our process involves two steps: the hydrogel is first functionalized with a layer of poly(D-lysine) (PDL), which then allows the adsorption of pristine, unmodified basement membrane proteins. This approach successfully mediates the formation of IEO monolayer unlike conventional approaches that rely on covalent modification of the hydrogel surface with cell-adhesive peptides and basement membrane proteins. We show that these IEO monolayers recreate important physiological functions of the native intestinal epithelium, including multilineage differentiation, apical-basal polarization, and the ability to model infections with human norovirus. We also show coating of a scaffold mimicking intestinal villous topography, resulting in a 3D IEO monolayer. We expect that this protocol will be useful to researchers attempting to leverage the increased physiological relevance of organoid models to elevate the potential of their tissue-engineered constructs. Impact statement While organoids are physiologically superior models of biological functions than traditional cell cultures, their 3D spheroidal architecture is an obstacle to their incorporation in many tissue-engineering applications, which often prefer 2D monolayer arrangements of cells. For this reason, we developed a protocol to establish monolayer cultures of organoids on poly(ethylene glycol) hydrogels and demonstrate its utility using intestinal epithelial organoids as a proof-of-concept. We expect that this protocol will be of use to researchers creating engineered tissues for both regenerative medicine applications, as well as advanced in vitro experimental models.


Subject(s)
Hydrogels , Organoids , Biocompatible Materials , Cell Culture Techniques , Humans , Polyethylene Glycols
3.
PLoS Pathog ; 16(9): e1008851, 2020 09.
Article in English | MEDLINE | ID: mdl-32986782

ABSTRACT

Enteroaggregative Escherichia coli (EAEC) is a significant cause of acute and chronic diarrhea, foodborne outbreaks, infections of the immunocompromised, and growth stunting in children in developing nations. There is no vaccine and resistance to antibiotics is rising. Unlike related E. coli pathotypes that are often associated with acute bouts of infection, EAEC is associated with persistent diarrhea and subclinical long-term colonization. Several secreted virulence factors have been associated with EAEC pathogenesis and linked to disease in humans, less certain are the molecular drivers of adherence to the intestinal mucosa. We previously established human intestinal enteroids (HIEs) as a model system to study host-EAEC interactions and aggregative adherence fimbriae A (AafA) as a major driver of EAEC adherence to HIEs. Here, we report a large-scale assessment of the host response to EAEC adherence from all four segments of the intestine across at least three donor lines for five E. coli pathotypes. The data demonstrate that the host response in the duodenum is driven largely by the infecting pathotype, whereas the response in the colon diverges in a patient-specific manner. Major pathways altered in gene expression in each of the four enteroid segments differed dramatically, with responses observed for inflammation, apoptosis and an overwhelming response to different mucin genes. In particular, EAEC both associated with large mucus droplets and specific mucins at the epithelial surface, binding that was ameliorated when mucins were removed, a process dependent on AafA. Pan-screening for glycans for binding to purified AafA identified the human ligand as heparan sulfate proteoglycans (HSPGs). Removal of HSPG abrogated EAEC association with HIEs. These results may mean that the human intestine responds remarkably different to distinct pathobionts that is dependent on the both the individual and intestinal segment in question, and uncover a major role for surface heparan sulfate proteoglycans as tropism-driving factor in adherence and/or colonization.


Subject(s)
Bacterial Adhesion/physiology , Escherichia coli Infections/metabolism , Escherichia coli Proteins/metabolism , Heparan Sulfate Proteoglycans/metabolism , Adhesins, Escherichia coli/genetics , Escherichia coli/metabolism , Fimbriae, Bacterial/metabolism , Humans , Intestinal Mucosa/metabolism , Virulence Factors/metabolism
4.
Cardiovasc Eng Technol ; 11(3): 316-327, 2020 06.
Article in English | MEDLINE | ID: mdl-32356274

ABSTRACT

PURPOSE: Fibrocalcific aortic valve disease (CAVD) is caused by the deposition of calcific nodules in the aortic valve leaflets, resulting in progressive loss of function that ultimately requires surgical intervention. This process is actively mediated by the resident valvular interstitial cells (VICs), which, in response to oxidized lipids, transition from a quiescent to an osteoblast-like state. The purpose of this study was to examine if the ryanodine receptor, an intracellular calcium channel, could be therapeutically targeted to prevent this phenotypic conversion. METHODS: The expression of the ryanodine receptor in porcine aortic VICs was characterized by qRT-PCR and immunofluorescence. Next, the VICs were exposed to lysophosphatidylcholine, an oxidized lipid commonly found in low-density lipoprotein, while the activity of the ryanodine receptor was modulated with ryanodine. The cultures were analyzed for markers of cellular mineralization, alkaline phosphatase activity, proliferation, and apoptosis. RESULTS: Porcine aortic VICs predominantly express isoform 3 of the ryanodine receptors, and this protein mediates the cellular response to LPC. Exposure to LPC caused elevated intracellular calcium concentration in VICs, raised levels of alkaline phosphatase activity, and increased calcific nodule formation, but these changes were reversed when the activity of the ryanodine receptor was blocked. CONCLUSIONS: Our findings suggest blocking the activity of the ryanodine receptor can attenuate the valvular mineralization caused by LPC. We conclude that oxidized lipids, such as LPC, play an important role in the development and progression of CAVD and that the ryanodine receptor is a promising target for pharmacological intervention.


Subject(s)
Aortic Valve/drug effects , Calcinosis/chemically induced , Calcium Channel Agonists/toxicity , Calcium/metabolism , Lysophosphatidylcholines/toxicity , Ryanodine Receptor Calcium Release Channel/metabolism , Alkaline Phosphatase/metabolism , Animals , Aortic Valve/metabolism , Aortic Valve/pathology , Apoptosis/drug effects , Calcinosis/metabolism , Calcinosis/pathology , Calcinosis/prevention & control , Calcium Channel Blockers/pharmacology , Calcium Signaling , Cell Proliferation/drug effects , Cells, Cultured , Ryanodine Receptor Calcium Release Channel/genetics , Sus scrofa
5.
Tissue Eng Part B Rev ; 26(4): 313-326, 2020 08.
Article in English | MEDLINE | ID: mdl-32046599

ABSTRACT

Pathologies affecting the small intestine contribute significantly to the disease burden of both the developing and the developed world, which has motivated investigation into the disease mechanisms through in vitro models. Although existing in vitro models recapitulate selected features of the intestine, various important aspects have often been isolated or omitted due to the anatomical and physiological complexity. The small intestine's intricate microanatomy, heterogeneous cell populations, steep oxygen gradients, microbiota, and intestinal wall contractions are often not included in in vitro experimental models of the small intestine, despite their importance in both intestinal biology and pathology. Known and unknown interdependencies between various physiological aspects necessitate more complex in vitro models. Microfluidic technology has made it possible to mimic the dynamic mechanical environment, signaling gradients, and other important aspects of small intestinal biology. This review presents an overview of the complexity of small intestinal anatomy and bioengineered models that recapitulate some of these physiological aspects.


Subject(s)
Cell Differentiation , Intestine, Small/cytology , Models, Biological , Tissue Engineering/methods , Animals , Humans
6.
ACS Biomater Sci Eng ; 5(9): 4522-4530, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-33438417

ABSTRACT

A major barrier to the creation of engineered organs is the limited diffusion of oxygen through biological tissues. Advances in biofabrication bring us increasingly closer to complex vascular networks capable of supplying oxygen to large cellularized scaffolds. However, technologies for monitoring oxygen levels in engineered tissues do not accommodate imaging depths of more than a few dozen micrometers. Here, we report the creation of fluorescent porphyrin-hydrogel microparticles that can be used at depths of 2 mm into artificial tissues. By combining an oxygen-responsive porphyrin dye with a reference dye, the microparticles generate a ratiometric signal that is photostable, unaffected by attenuation from biological material, and responsive to physiological change in oxygen concentration. These microparticles can measure long-distance oxygen gradients within 3D, cellularized constructs and accurately report cellular oxygen consumption rates. Furthermore, they are compatible with a number of hydrogel polymerization chemistries and cell types, including primary human cells. We believe this technology will significantly advance efforts to visualize oxygen gradients in cellularized constructs and inform efforts to tissue engineer solid organs.

7.
Cardiovasc Eng Technol ; 5(4): 371-383, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25419248

ABSTRACT

PURPOSE: Calcific aortic valve disease (CAVD) is a serious condition with vast uncertainty regarding the precise mechanism leading to valve calcification. This study was undertaken to examine the role of the lipid lysophosphatidylcholine (LPC) in a comparison of aortic and mitral valve cellular mineralization. METHODS: The proportion of LPC in differentially calcified regions of diseased aortic valves was determined using thin layer chromatography (TLC). Next, porcine valvular interstitial cells (pVICs) from the aortic (paVICs) and mitral valve (pmVICs) were cultured with LPC (10-1 - 105 nM) and analyzed for cellular mineralization, alkaline phosphatase activity (ALPa), proliferation, and apoptosis. RESULTS: TLC showed a higher percentage of LPC in calcified regions of tissue compared to non-calcified regions. In pVIC cultures, with the exception of 105 nM LPC, increasing concentrations of LPC led to an increase in phosphate mineralization. Increased levels of calcium content were exhibited at 104 nm LPC application compared to baseline controls. Compared to pmVIC cultures, paVIC cultures had greater total phosphate mineralization, ALPa, calcium content, and apoptosis, under both a baseline control and LPC-treated conditions. CONCLUSIONS: This study showed that LPC has the capacity to promote pVIC calcification. Also, paVICs have a greater propensity for mineralization than pmVICs. LPC may be a key factor in the transition of the aortic valve from a healthy to diseased state. In addition, there are intrinsic differences that exist between VICs from different valves that may play a key role in heart valve pathology.

SELECTION OF CITATIONS
SEARCH DETAIL
...