Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(3): e0299665, 2024.
Article in English | MEDLINE | ID: mdl-38512906

ABSTRACT

Reversible S-palmitoylation of protein cysteines, catalysed by a family of integral membrane zDHHC-motif containing palmitoyl acyl transferases (zDHHC-PATs), controls the localisation, activity, and interactions of numerous integral and peripheral membrane proteins. There are compelling reasons to want to inhibit the activity of individual zDHHC-PATs in both the laboratory and the clinic, but the specificity of existing tools is poor. Given the extensive conservation of the zDHHC-PAT active site, development of isoform-specific competitive inhibitors is highly challenging. We therefore hypothesised that proteolysis-targeting chimaeras (PROTACs) may offer greater specificity to target this class of enzymes. In proof-of-principle experiments we engineered cell lines expressing tetracycline-inducible Halo-tagged zDHHC5 or zDHHC20, and evaluated the impact of Halo-PROTACs on zDHHC-PAT expression and substrate palmitoylation. In HEK-derived FT-293 cells, Halo-zDHHC5 degradation significantly decreased palmitoylation of its substrate phospholemman, and Halo-zDHHC20 degradation significantly diminished palmitoylation of its substrate IFITM3, but not of the SARS-CoV-2 spike protein. In contrast, in a second kidney derived cell line, Vero E6, Halo-zDHHC20 degradation did not alter palmitoylation of either IFITM3 or SARS-CoV-2 spike. We conclude from these experiments that PROTAC-mediated targeting of zDHHC-PATs to decrease substrate palmitoylation is feasible. However, given the well-established degeneracy in the zDHHC-PAT family, in some settings the activity of non-targeted zDHHC-PATs may substitute and preserve substrate palmitoylation.


Subject(s)
Acyltransferases , Lipoylation , Humans , Acyltransferases/genetics , Acyltransferases/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Cell Line , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism
2.
PLoS Biol ; 21(11): e3002398, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38015855

ABSTRACT

The prenylated form of the human 2'-5'-oligoadenylate synthetase 1 (OAS1) protein has been shown to potently inhibit the replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. However, the OAS1 orthologue in the horseshoe bats (superfamily Rhinolophoidea), the reservoir host of SARS-related coronaviruses (SARSr-CoVs), has lost the prenylation signal required for this antiviral activity. Herein, we used an ancestral state reconstruction approach to predict and reconstitute in vitro, the most likely OAS1 protein sequence expressed by the Rhinolophoidea common ancestor prior to its prenylation loss (RhinoCA OAS1). We exogenously expressed the ancient bat protein in vitro to show that, unlike its non-prenylated horseshoe bat descendants, RhinoCA OAS1 successfully blocks SARS-CoV-2 replication. Using protein structure predictions in combination with evolutionary hypothesis testing methods, we highlight sites under unique diversifying selection specific to OAS1's evolution in the Rhinolophoidea. These sites are located near the RNA-binding region and the C-terminal end of the protein where the prenylation signal would have been. Our results confirm that OAS1 prenylation loss at the base of the Rhinolophoidea clade ablated the ability of OAS1 to restrict SARSr-CoV replication and that subsequent evolution of the gene in these bats likely favoured an alternative function. These findings can advance our understanding of the tightly linked association between SARSr-CoVs and horseshoe bats.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , SARS-CoV-2 , Phylogeny , 2',5'-Oligoadenylate Synthetase/genetics
4.
Nature ; 619(7969): 338-347, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37380775

ABSTRACT

Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic1. Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans1. Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3)2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure3. Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses.


Subject(s)
Birds , Host Microbial Interactions , Influenza A virus , Influenza in Birds , Influenza, Human , Viral Zoonoses , Animals , Humans , Birds/virology , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/growth & development , Influenza A virus/isolation & purification , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza, Human/prevention & control , Influenza, Human/transmission , Influenza, Human/virology , Primates , Respiratory System/metabolism , Respiratory System/virology , Risk Assessment , Viral Zoonoses/prevention & control , Viral Zoonoses/transmission , Viral Zoonoses/virology , Virus Replication
5.
mBio ; 14(3): e0010123, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37097030

ABSTRACT

Infected hosts possess two alternative strategies to protect themselves against the negative impact of virus infections: resistance, used to abrogate virus replication, and disease tolerance, used to avoid tissue damage without controlling viral burden. The principles governing pathogen resistance are well understood, while less is known about those involved in disease tolerance. Here, we studied bluetongue virus (BTV), the cause of bluetongue disease of ruminants, as a model system to investigate the mechanisms of virus-host interactions correlating with disease tolerance. BTV induces clinical disease mainly in sheep, while cattle are considered reservoirs of infection, rarely exhibiting clinical symptoms despite sustained viremia. Using primary cells from multiple donors, we show that BTV consistently reaches higher titers in ovine cells than cells from cattle. The variable replication kinetics of BTV in sheep and cow cells were mostly abolished by abrogating the cell type I interferon (IFN) response. We identified restriction factors blocking BTV replication, but both the sheep and cow orthologues of these antiviral genes possess anti-BTV properties. Importantly, we demonstrate that BTV induces a faster host cell protein synthesis shutoff in primary sheep cells than cow cells, which results in an earlier downregulation of antiviral proteins. Moreover, by using RNA sequencing (RNA-seq), we also show a more pronounced expression of interferon-stimulated genes (ISGs) in BTV-infected cow cells than sheep cells. Our data provide a new perspective on how the type I IFN response in reservoir species can have overall positive effects on both virus and host evolution. IMPORTANCE The host immune response usually aims to inhibit virus replication in order to avoid cell damage and disease. In some cases, however, the infected host avoids the deleterious effects of infection despite high levels of viral replication. This strategy is known as disease tolerance, and it is used by animal reservoirs of some zoonotic viruses. Here, using a virus of ruminants (bluetongue virus [BTV]) as an experimental system, we dissected virus-host interactions in cells collected from species that are susceptible (sheep) or tolerant (cow) to disease. We show that (i) virus modulation of the host antiviral type I interferon (IFN) responses, (ii) viral replication kinetics, and (iii) virus-induced cell damage differ in tolerant and susceptible BTV-infected cells. Understanding the complex virus-host interactions in disease tolerance can allow us to disentangle the critical balance between protective and damaging host immune responses.


Subject(s)
Bluetongue , Interferon Type I , Female , Sheep , Animals , Cattle , Interferon Type I/genetics , Bluetongue/metabolism , Viremia , Antiviral Agents
6.
Wellcome Open Res ; 7: 224, 2022.
Article in English | MEDLINE | ID: mdl-36483314

ABSTRACT

Background: Quantitative proteomics is able to provide a comprehensive, unbiased description of changes to cells caused by viral infection, but interpretation may be complicated by differential changes in infected and uninfected 'bystander' cells, or the use of non-physiological cellular models. Methods: In this paper, we use fluorescence-activated cell sorting (FACS) and quantitative proteomics to analyse cell-autonomous changes caused by authentic SARS-CoV-2 infection of respiratory epithelial cells, the main target of viral infection in vivo. First, we determine the relative abundance of proteins in primary human airway epithelial cells differentiated at the air-liquid interface (basal, secretory and ciliated cells). Next, we specifically characterise changes caused by SARS-CoV-2 infection of ciliated cells. Finally, we compare temporal proteomic changes in infected and uninfected 'bystander' Calu-3 lung epithelial cells and compare infection with B.29 and B.1.1.7 (Alpha) variants. Results: Amongst 5,709 quantified proteins in primary human airway ciliated cells, the abundance of 226 changed significantly in the presence of SARS-CoV-2 infection (q <0.05 and >1.5-fold). Notably, viral replication proceeded without inducing a type-I interferon response. Amongst 6,996 quantified proteins in Calu-3 cells, the abundance of 645 proteins changed significantly in the presence of SARS-CoV-2 infection (q < 0.05 and > 1.5-fold). In contrast to the primary cell model, a clear type I interferon (IFN) response was observed. Nonetheless, induction of IFN-inducible proteins was markedly attenuated in infected cells, compared with uninfected 'bystander' cells. Infection with B.29 and B.1.1.7 (Alpha) variants gave similar results. Conclusions: Taken together, our data provide a detailed proteomic map of changes in SARS-CoV-2-infected respiratory epithelial cells in two widely used, physiologically relevant models of infection. As well as identifying dysregulated cellular proteins and processes, the effectiveness of strategies employed by SARS-CoV-2 to avoid the type I IFN response is illustrated in both models.

7.
PLoS Pathog ; 18(11): e1010973, 2022 11.
Article in English | MEDLINE | ID: mdl-36399512

ABSTRACT

HIV-1 transmission via sexual exposure is an inefficient process. When transmission does occur, newly infected individuals are colonized by the descendants of either a single virion or a very small number of establishing virions. These transmitted founder (TF) viruses are more interferon (IFN)-resistant than chronic control (CC) viruses present 6 months after transmission. To identify the specific molecular defences that make CC viruses more susceptible to the IFN-induced 'antiviral state', we established a single pair of fluorescent TF and CC viruses and used arrayed interferon-stimulated gene (ISG) expression screening to identify candidate antiviral effectors. However, we observed a relatively uniform ISG resistance of transmitted HIV-1, and this directed us to investigate possible underlying mechanisms. Simple simulations, where we varied a single parameter, illustrated that reduced growth rate could possibly underly apparent interferon sensitivity. To examine this possibility, we closely monitored in vitro propagation of a model TF/CC pair (closely matched in replicative fitness) over a targeted range of IFN concentrations. Fitting standard four-parameter logistic growth models, in which experimental variables were regressed against growth rate and carrying capacity, to our in vitro growth curves, further highlighted that small differences in replicative growth rates could recapitulate our in vitro observations. We reasoned that if growth rate underlies apparent interferon resistance, transmitted HIV-1 would be similarly resistant to any growth rate inhibitor. Accordingly, we show that two transmitted founder HIV-1 viruses are relatively resistant to antiretroviral drugs, while their matched chronic control viruses were more sensitive. We propose that, when present, the apparent IFN resistance of transmitted HIV-1 could possibly be explained by enhanced replicative fitness, as opposed to specific resistance to individual IFN-induced defences. However, further work is required to establish how generalisable this mechanism of relative IFN resistance might be.


Subject(s)
Dermatitis , HIV Seropositivity , HIV-1 , Humans , Interferons/pharmacology , Antiviral Agents , DNA Replication
8.
Viruses ; 14(8)2022 07 28.
Article in English | MEDLINE | ID: mdl-36016278

ABSTRACT

Natural hepatitis C virus (HCV) infection is restricted to humans, whereas other primates such as rhesus macaques are non-permissive for infection. To identify human and rhesus macaque genes that differ or share the ability to inhibit HCV replication, we conducted a medium-throughput screen of lentivirus-expressed host genes that disrupt replication of HCV subgenomic replicon RNA expressing secreted Gaussia luciferase. A combined total of >800 interferon-stimulated genes (ISGs) were screened. Our findings confirmed established anti-HCV ISGs, such as IRF1, PKR and DDX60. Novel species−specific inhibitors were also identified and independently validated. Using a cell-based system that recapitulates productive HCV infection, we identified that over-expression of the 'Rho Guanine Nucleotide Exchange Factor 3' gene (ARHGEF3) from both species inhibits full-length virus replication. Additionally, replication of two mosquito-borne flaviviruses, yellow fever virus (YFV) and Zika virus (ZIKV), were also reduced in cell lines over-expressing ARHGEF3 compared to controls. In conclusion, we ascribe novel antiviral activity to the cellular gene ARHGEF3 that inhibits replication of HCV and other important human viral pathogens belonging to the Flaviviridae, and which is conserved between humans and rhesus macaques.


Subject(s)
Hepatitis C , Zika Virus Infection , Zika Virus , Animals , Antiviral Agents/pharmacology , Hepacivirus/genetics , Hepatitis C/drug therapy , Humans , Interferons/pharmacology , Macaca mulatta , Rho Guanine Nucleotide Exchange Factors , Virus Replication , Zika Virus Infection/drug therapy
9.
PLoS Pathog ; 18(5): e1010530, 2022 05.
Article in English | MEDLINE | ID: mdl-35533151

ABSTRACT

Ebola virus (EBOV) causes highly pathogenic disease in primates. Through screening a library of human interferon-stimulated genes (ISGs), we identified TRIM25 as a potent inhibitor of EBOV transcription-and-replication-competent virus-like particle (trVLP) propagation. TRIM25 overexpression inhibited the accumulation of viral genomic and messenger RNAs independently of the RNA sensor RIG-I or secondary proinflammatory gene expression. Deletion of TRIM25 strongly attenuated the sensitivity of trVLPs to inhibition by type-I interferon. The antiviral activity of TRIM25 required ZAP and the effect of type-I interferon was modulated by the CpG dinucleotide content of the viral genome. We find that TRIM25 interacts with the EBOV vRNP, resulting in its autoubiquitination and ubiquitination of the viral nucleoprotein (NP). TRIM25 is recruited to incoming vRNPs shortly after cell entry and leads to dissociation of NP from the vRNA. We propose that TRIM25 targets the EBOV vRNP, exposing CpG-rich viral RNA species to restriction by ZAP.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Interferon Type I , Animals , Antiviral Agents/metabolism , Ebolavirus/metabolism , Interferon Type I/metabolism , Ribonucleoproteins/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Virus Replication/genetics
10.
Elife ; 112022 05 19.
Article in English | MEDLINE | ID: mdl-35587364

ABSTRACT

The outcome of infection is dependent on the ability of viruses to manipulate the infected cell to evade immunity, and the ability of the immune response to overcome this evasion. Understanding this process is key to understanding pathogenesis, genetic risk factors, and both natural and vaccine-induced immunity. SARS-CoV-2 antagonises the innate interferon response, but whether it manipulates innate cellular immunity is unclear. An unbiased proteomic analysis determined how cell surface protein expression is altered on SARS-CoV-2-infected lung epithelial cells, showing downregulation of activating NK ligands B7-H6, MICA, ULBP2, and Nectin1, with minimal effects on MHC-I. This occurred at the level of protein synthesis, could be mediated by Nsp1 and Nsp14, and correlated with a reduction in NK cell activation. This identifies a novel mechanism by which SARS-CoV-2 host-shutoff antagonises innate immunity. Later in the disease process, strong antibody-dependent NK cell activation (ADNKA) developed. These responses were sustained for at least 6 months in most patients, and led to high levels of pro-inflammatory cytokine production. Depletion of spike-specific antibodies confirmed their dominant role in neutralisation, but these antibodies played only a minor role in ADNKA compared to antibodies to other proteins, including ORF3a, Membrane, and Nucleocapsid. In contrast, ADNKA induced following vaccination was focussed solely on spike, was weaker than ADNKA following natural infection, and was not boosted by the second dose. These insights have important implications for understanding disease progression, vaccine efficacy, and vaccine design.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies , Antibodies, Viral , Humans , Killer Cells, Natural , Proteomics
11.
PLoS Pathog ; 17(9): e1009929, 2021 09.
Article in English | MEDLINE | ID: mdl-34534263

ABSTRACT

Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus RNA-Dependent RNA Polymerase/genetics , Drug Resistance, Microbial/genetics , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Biological Evolution , Chlorocebus aethiops , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
12.
PLoS Biol ; 19(9): e3001352, 2021 09.
Article in English | MEDLINE | ID: mdl-34491982

ABSTRACT

Antiviral defenses can sense viral RNAs and mediate their destruction. This presents a challenge for host cells since they must destroy viral RNAs while sparing the host mRNAs that encode antiviral effectors. Here, we show that highly upregulated interferon-stimulated genes (ISGs), which encode antiviral proteins, have distinctive nucleotide compositions. We propose that self-targeting by antiviral effectors has selected for ISG transcripts that occupy a less self-targeted sequence space. Following interferon (IFN) stimulation, the CpG-targeting antiviral effector zinc-finger antiviral protein (ZAP) reduces the mRNA abundance of multiple host transcripts, providing a mechanistic explanation for the repression of many (but not all) interferon-repressed genes (IRGs). Notably, IRGs tend to be relatively CpG rich. In contrast, highly upregulated ISGs tend to be strongly CpG suppressed. Thus, ZAP is an example of an effector that has not only selected compositional biases in viral genomes but also appears to have notably shaped the composition of host transcripts in the vertebrate interferome.


Subject(s)
Dinucleoside Phosphates , Interferon Regulatory Factors/genetics , RNA, Viral , RNA-Binding Proteins/metabolism , A549 Cells , Cell Line , Humans , Interferon-beta/pharmacology , RNA, Messenger , RNA-Binding Proteins/genetics , Virus Physiological Phenomena , Viruses
13.
Science ; 374(6567): eabj3624, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34581622

ABSTRACT

Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that 2'-5'-oligoadenylate synthetase 1 (OAS1), through ribonuclease L, potently inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that a common splice-acceptor single-nucleotide polymorphism (Rs10774671) governs whether patients express prenylated OAS1 isoforms that are membrane-associated and sense-specific regions of SARS-CoV-2 RNAs or if they only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. In hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting that this antiviral defense is a major component of a protective antiviral response.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , COVID-19/genetics , COVID-19/physiopathology , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , SARS-CoV-2/physiology , 5' Untranslated Regions , A549 Cells , Animals , COVID-19/enzymology , COVID-19/immunology , Chiroptera/genetics , Chiroptera/virology , Coronaviridae/enzymology , Coronaviridae/genetics , Coronaviridae/physiology , Endoribonucleases/metabolism , Humans , Interferons/immunology , Isoenzymes/genetics , Isoenzymes/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Polymorphism, Single Nucleotide , Protein Prenylation , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Retroelements , SARS-CoV-2/genetics , Severity of Illness Index , Virus Replication
14.
Molecules ; 26(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206893

ABSTRACT

PF74 is a capsid-targeting inhibitor of HIV replication that effectively perturbs the highly sensitive viral uncoating process. A lack of information regarding the optical purity (enantiomeric excess) of the single stereogenic centre of PF74 has resulted in ambiguity as to the potency of different samples of this compound. Herein is described the synthesis of enantiomerically enriched (S)- and (R)-PF74 and further enrichment of the samples (≥98%) using chiral HPLC resolution. The biological activities of each enantiomer were then evaluated, which determined (S)-PF74 (IC50 1.5 µM) to be significantly more active than (R)-PF74 (IC50 19 µM). Computational docking studies were then conducted to rationalise this large discrepancy in activity, which indicated different binding conformations for each enantiomer. The binding energy of the conformation adopted by the more active (S)-PF74 (ΔG = -73.8 kcal/mol) was calculated to be more favourable than the conformation adopted by the less active (R)-enantiomer (ΔG = -55.8 kcal/mol) in agreement with experimental observations.


Subject(s)
Anti-HIV Agents/pharmacology , Capsid Proteins/metabolism , Capsid/drug effects , HIV Infections/drug therapy , HIV-1/drug effects , Indoles/pharmacology , Phenylalanine/analogs & derivatives , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Capsid/chemistry , Chromatography, High Pressure Liquid , HEK293 Cells , Humans , Indoles/chemical synthesis , Indoles/chemistry , Inhibitory Concentration 50 , Molecular Docking Simulation , Phenylalanine/chemical synthesis , Phenylalanine/chemistry , Phenylalanine/pharmacology , Stereoisomerism
15.
PLoS Pathog ; 16(9): e1008844, 2020 09.
Article in English | MEDLINE | ID: mdl-32886716

ABSTRACT

The genomes of RNA and small DNA viruses of vertebrates display significant suppression of CpG dinucleotide frequencies. Artificially increasing dinucleotide frequencies results in substantial attenuation of virus replication, suggesting that these compositional changes may facilitate recognition of non-self RNA sequences. Recently, the interferon inducible protein ZAP, was identified as the host factor responsible for sensing CpG in viral RNA, through direct binding and possibly downstream targeting for degradation. Using an arrayed interferon stimulated gene expression library screen, we identified ZAPS, and its associated factor TRIM25, as inhibitors of human cytomegalovirus (HCMV) replication. Exogenous expression of ZAPS and TRIM25 significantly reduced virus replication while knockdown resulted in increased virus replication. HCMV displays a strikingly heterogeneous pattern of CpG representation with specific suppression of CpG motifs within the IE1 major immediate early transcript which is absent in subsequently expressed genes. We demonstrated that suppression of CpG dinucleotides in the IE1 gene allows evasion of inhibitory effects of ZAP. We show that acute virus replication is mutually exclusive with high levels of cellular ZAP, potentially explaining the higher levels of CpG in viral genes expressed subsequent to IE1 due to the loss of pressure from ZAP in infected cells. Finally, we show that TRIM25 regulates alternative splicing between the ZAP short and long isoforms during HCMV infection and interferon induction, with knockdown of TRIM25 resulting in decreased ZAPS and corresponding increased ZAPL expression. These results demonstrate for the first time that ZAP is a potent host restriction factor against large DNA viruses and that HCMV evades ZAP detection through suppression of CpG dinucleotides within the major immediate early 1 transcript. Furthermore, TRIM25 is required for efficient upregulation of the interferon inducible short isoform of ZAP through regulation of alternative splicing.


Subject(s)
Alternative Splicing , CpG Islands , Cytomegalovirus Infections/metabolism , Cytomegalovirus/physiology , Gene Expression Regulation, Viral , RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Virus Replication , Cell Line , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/pathology , Humans , Immediate-Early Proteins , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
16.
bioRxiv ; 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32908977

ABSTRACT

Genome sequencing has been widely deployed to study the evolution of SARS-CoV-2 with more than 90,000 genome sequences uploaded to the GISAID database. We published a method for SARS-CoV-2 genome sequencing (https://www.protocols.io/view/ncov-2019-sequencing-protocol-bbmuik6w) online on January 22, 2020. This approach has rapidly become the most popular method for sequencing SARS-CoV-2 due to its simplicity and cost-effectiveness. Here we present improvements to the original protocol: i) an updated primer scheme with 22 additional primers to improve genome coverage, ii) a streamlined library preparation workflow which improves demultiplexing rate for up to 96 samples and reduces hands-on time by several hours and iii) cost savings which bring the reagent cost down to £10 per sample making it practical for individual labs to sequence thousands of SARS-CoV-2 genomes to support national and international genomic epidemiology efforts.

17.
J Virol ; 93(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31375575

ABSTRACT

Vesicular stomatitis Indiana virus (VSIV), formerly known as vesicular stomatitis virus (VSV) Indiana (VSVIND), is a model virus that is exceptionally sensitive to the inhibitory action of interferons (IFNs). Interferons induce an antiviral state by stimulating the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs can constrain viral replication, limit tissue tropism, reduce pathogenicity, and inhibit viral transmission. Since VSIV is used as a backbone for multiple oncolytic and vaccine strategies, understanding how ISGs restrict VSIV not only helps in understanding VSIV-induced pathogenesis but also helps us evaluate and understand the safety and efficacy of VSIV-based therapies. Thus, there is a need to identify and characterize the ISGs that possess anti-VSIV activity. Using arrayed ISG expression screening, we identified TRIM69 as an ISG that potently inhibits VSIV. This inhibition was highly specific as multiple viruses, including influenza A virus, HIV-1, Rift Valley fever virus, and dengue virus, were unaffected by TRIM69. Indeed, just one amino acid substitution in VSIV can govern sensitivity/resistance to TRIM69. Furthermore, TRIM69 is highly divergent in human populations and exhibits signatures of positive selection that are consistent with this gene playing a key role in antiviral immunity. We propose that TRIM69 is an IFN-induced inhibitor of VSIV and speculate that TRIM69 could be important in limiting VSIV pathogenesis and might influence the specificity and/or efficacy of vesiculovirus-based therapies.IMPORTANCE Vesicular stomatitis Indiana virus (VSIV) is a veterinary pathogen that is also used as a backbone for many oncolytic and vaccine strategies. In natural and therapeutic settings, viral infections like VSIV are sensed by the host, and as a result the host cells make proteins that can protect them from viruses. In the case of VSIV, these antiviral proteins constrain viral replication and protect most healthy tissues from virus infection. In order to understand how VSIV causes disease and how healthy tissues are protected from VSIV-based therapies, it is crucial that we identify the proteins that inhibit VSIV. Here, we show that TRIM69 is an antiviral defense that can potently and specifically block VSIV infection.


Subject(s)
Host-Pathogen Interactions , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Vesicular Stomatitis/metabolism , Vesicular Stomatitis/virology , Vesicular stomatitis Indiana virus/physiology , Virus Replication , Alleles , Amino Acid Sequence , Animals , Antiviral Agents/pharmacology , Dengue Virus/physiology , Disease Resistance , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Interferons/metabolism , Interferons/pharmacology , Multigene Family , Phosphorylation , Signal Transduction , Tripartite Motif Proteins/chemistry , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Vesicular Stomatitis/genetics , Vesicular Stomatitis/immunology
18.
Virus Res ; 262: 15-23, 2019 03.
Article in English | MEDLINE | ID: mdl-29601845

ABSTRACT

Circoviruses (family Circoviridae) are small, non-enveloped viruses that have short, single-stranded DNA genomes. Circovirus sequences are frequently recovered in metagenomic investigations, indicating that these viruses are widespread, yet they remain relatively poorly understood. Endogenous circoviral elements (CVe) are DNA sequences derived from circoviruses that occur in vertebrate genomes. CVe are a useful source of information about the biology and evolution of circoviruses. In this study, we screened 362 vertebrate genome assemblies in silico to generate a catalog of CVe loci. We identified a total of 179 CVe sequences, most of which have not been reported previously. We show that these CVe loci reflect at least 19 distinct germline integration events. We determine the structure of CVe loci, identifying some that show evidence of potential functionalization. We also identify orthologous copies of CVe in snakes, fish, birds, and mammals, allowing us to add new calibrations to the timeline of circovirus evolution. Finally, we observed that some ancient CVe group robustly with contemporary circoviruses in phylogenies, with all sequences within these groups being derived from the same host class or order, implying a hitherto underappreciated stability in circovirus-host relationships. The openly available dataset constructed in this investigation provides new insights into circovirus evolution, and can be used to facilitate further studies of circoviruses and CVe.


Subject(s)
Circovirus/genetics , Evolution, Molecular , Genetic Variation , Genome , Vertebrates/genetics , Virus Integration , Animals , Circoviridae Infections/virology , Genome, Viral , Phylogeny , Vertebrates/virology
19.
J Virol ; 92(16)2018 08 15.
Article in English | MEDLINE | ID: mdl-29875243

ABSTRACT

A diverse range of DNA sequences derived from circoviruses (family Circoviridae) has been identified in samples obtained from humans and domestic animals, often in association with pathological conditions. In the majority of cases, however, little is known about the natural biology of the viruses from which these sequences are derived. Endogenous circoviral elements (CVe) are DNA sequences derived from circoviruses that occur in animal genomes and provide a useful source of information about circovirus-host relationships. In this study, we screened genome assemblies of 675 animal species and identified numerous circovirus-related sequences, including the first examples of CVe derived from cycloviruses. We confirmed the presence of these CVe in the germ line of the elongate twig ant (Pseudomyrmex gracilis), thereby establishing that cycloviruses infect insects. We examined the evolutionary relationships between CVe and contemporary circoviruses, showing that CVe from ants and mites group relatively closely with cycloviruses in phylogenies. Furthermore, the relatively random interspersion of CVe from insect genomes with cyclovirus sequences recovered from vertebrate samples suggested that contamination might be an important consideration in studies reporting these viruses. Our study demonstrates how endogenous viral sequences can inform metagenomics-based virus discovery. In addition, it raises doubts about the role of cycloviruses as pathogens of humans and other vertebrates.IMPORTANCE Advances in DNA sequencing have dramatically increased the rate at which new viruses are being identified. However, the host species associations of most virus sequences identified in metagenomic samples are difficult to determine. Our analysis indicates that viruses proposed to infect vertebrates (in some cases being linked to human disease) may in fact be restricted to arthropod hosts. The detection of these sequences in vertebrate samples may reflect their widespread presence in the environment as viruses of parasitic arthropods.


Subject(s)
Circovirus/genetics , Genome , Host Specificity , Animals , Circovirus/physiology
20.
J Virol ; 92(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29695422

ABSTRACT

Bunyaviruses pose a significant threat to human health, prosperity, and food security. In response to viral infections, interferons (IFNs) upregulate the expression of hundreds of interferon-stimulated genes (ISGs), whose cumulative action can potently inhibit the replication of bunyaviruses. We used a flow cytometry-based method to screen the ability of ∼500 unique ISGs from humans and rhesus macaques to inhibit the replication of Bunyamwera orthobunyavirus (BUNV), the prototype of both the Peribunyaviridae family and the Bunyavirales order. Candidates possessing antibunyaviral activity were further examined using a panel of divergent bunyaviruses. Interestingly, one candidate, ISG20, exhibited potent antibunyaviral activity against most viruses examined from the Peribunyaviridae, Hantaviridae, and Nairoviridae families, whereas phleboviruses (Phenuiviridae) largely escaped inhibition. Similar to the case against other viruses known to be targeted by ISG20, the antibunyaviral activity of ISG20 is dependent upon its functional RNase activity. Through use of an infectious virus-like particle (VLP) assay (based on the BUNV minigenome system), we confirmed that gene expression from all 3 viral segments is strongly inhibited by ISG20. Using in vitro evolution, we generated a substantially ISG20-resistant BUNV and mapped the determinants of ISG20 sensitivity/resistance. Taking all the data together, we report that ISG20 is a broad and potent antibunyaviral factor but that some bunyaviruses are remarkably ISG20 resistant. Thus, ISG20 sensitivity/resistance may influence the pathogenesis of bunyaviruses, many of which are emerging viruses of clinical or veterinary significance.IMPORTANCE There are hundreds of bunyaviruses, many of which cause life-threatening acute diseases in humans and livestock. The interferon (IFN) system is a key component of innate immunity, and type I IFNs limit bunyaviral propagation both in vitro and in vivo Type I IFN signaling results in the upregulation of hundreds of IFN-stimulated genes (ISGs), whose concerted action generates an "antiviral state." Although IFNs are critical in limiting bunyaviral replication and pathogenesis, much is still unknown about which ISGs inhibit bunyaviruses. Using ISG-expression screening, we examined the ability of ∼500 unique ISGs to inhibit Bunyamwera orthobunyavirus (BUNV), the prototypical bunyavirus. Using this approach, we identified ISG20, an interferon-stimulated exonuclease, as a potent inhibitor of BUNV. Interestingly, ISG20 possesses highly selective antibunyaviral activity, with multiple bunyaviruses being potently inhibited while some largely escape inhibition. We speculate that the ability of some bunyaviruses to escape ISG20 may influence their pathogenesis.


Subject(s)
Antiviral Agents/pharmacology , Bunyamwera virus/pathogenicity , Bunyaviridae Infections/prevention & control , Exonucleases/pharmacology , Genome, Viral , Interferons/metabolism , Bunyaviridae Infections/metabolism , Bunyaviridae Infections/virology , Exonucleases/genetics , Exoribonucleases , HeLa Cells , High-Throughput Screening Assays , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...