Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1700, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402224

ABSTRACT

The Ataxia telangiectasia and Rad3-related (ATR) inhibitor ceralasertib in combination with the PD-L1 antibody durvalumab demonstrated encouraging clinical benefit in melanoma and lung cancer patients who progressed on immunotherapy. Here we show that modelling of intermittent ceralasertib treatment in mouse tumor models reveals CD8+ T-cell dependent antitumor activity, which is separate from the effects on tumor cells. Ceralasertib suppresses proliferating CD8+ T-cells on treatment which is rapidly reversed off-treatment. Ceralasertib causes up-regulation of type I interferon (IFNI) pathway in cancer patients and in tumor-bearing mice. IFNI is experimentally found to be a major mediator of antitumor activity of ceralasertib in combination with PD-L1 antibody. Improvement of T-cell function after ceralasertib treatment is linked to changes in myeloid cells in the tumor microenvironment. IFNI also promotes anti-proliferative effects of ceralasertib on tumor cells. Here, we report that broad immunomodulatory changes following intermittent ATR inhibition underpins the clinical therapeutic benefit and indicates its wider impact on antitumor immunity.


Subject(s)
CD8-Positive T-Lymphocytes , Indoles , Morpholines , Neoplasms , Pyrimidines , Sulfonamides , Humans , Animals , Mice , B7-H1 Antigen , Tumor Microenvironment , Cell Line, Tumor , Immunotherapy , Disease Models, Animal , Ataxia Telangiectasia Mutated Proteins
2.
Cancers (Basel) ; 15(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37627223

ABSTRACT

Ataxia-telangiectasia mutated gene (ATM) is a key component of the DNA damage response (DDR) and double-strand break repair pathway. The functional loss of ATM (ATM deficiency) is hypothesised to enhance sensitivity to DDR inhibitors (DDRi). Whole-exome sequencing (WES), immunohistochemistry (IHC), and Western blotting (WB) were used to characterise the baseline ATM status across a panel of ATM mutated patient-derived xenograft (PDX) models from a range of tumour types. Antitumour efficacy was assessed with poly(ADP-ribose)polymerase (PARP, olaparib), ataxia- telangiectasia and rad3-related protein (ATR, AZD6738), and DNA-dependent protein kinase (DNA-PK, AZD7648) inhibitors as a monotherapy or in combination to associate responses with ATM status. Biallelic truncation/frameshift ATM mutations were linked to ATM protein loss while monoallelic or missense mutations, including the clinically relevant recurrent R3008H mutation, did not confer ATM protein loss by IHC. DDRi agents showed a mixed response across the PDX's but with a general trend toward greater activity, particularly in combination in models with biallelic ATM mutation and protein loss. A PDX with an ATM splice-site mutation, 2127T > C, with a high relative baseline ATM expression and KAP1 phosphorylation responded to all DDRi treatments. These data highlight the heterogeneity and complexity in describing targetable ATM-deficiencies and the fact that current patient selection biomarker methods remain imperfect; although, complete ATM loss was best able to enrich for DDRi sensitivity.

4.
Clin Cancer Res ; 28(20): 4536-4550, 2022 10 14.
Article in English | MEDLINE | ID: mdl-35921524

ABSTRACT

PURPOSE: PARP inhibitors (PARPi) induce synthetic lethality in homologous recombination repair (HRR)-deficient tumors and are used to treat breast, ovarian, pancreatic, and prostate cancers. Multiple PARPi resistance mechanisms exist, most resulting in restoration of HRR and protection of stalled replication forks. ATR inhibition was highlighted as a unique approach to reverse both aspects of resistance. Recently, however, a PARPi/WEE1 inhibitor (WEE1i) combination demonstrated enhanced antitumor activity associated with the induction of replication stress, suggesting another approach to tackling PARPi resistance. EXPERIMENTAL DESIGN: We analyzed breast and ovarian patient-derived xenoimplant models resistant to PARPi to quantify WEE1i and ATR inhibitor (ATRi) responses as single agents and in combination with PARPi. Biomarker analysis was conducted at the genetic and protein level. Metabolite analysis by mass spectrometry and nucleoside rescue experiments ex vivo were also conducted in patient-derived models. RESULTS: Although WEE1i response was linked to markers of replication stress, including STK11/RB1 and phospho-RPA, ATRi response associated with ATM mutation. When combined with olaparib, WEE1i could be differentiated from the ATRi/olaparib combination, providing distinct therapeutic strategies to overcome PARPi resistance by targeting the replication stress response. Mechanistically, WEE1i sensitivity was associated with shortage of the dNTP pool and a concomitant increase in replication stress. CONCLUSIONS: Targeting the replication stress response is a valid therapeutic option to overcome PARPi resistance including tumors without an underlying HRR deficiency. These preclinical insights are now being tested in several clinical trials where the PARPi is administered with either the WEE1i or the ATRi.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Antineoplastic Agents/therapeutic use , Ataxia Telangiectasia Mutated Proteins , BRCA1 Protein/genetics , Biomarkers , Carcinoma, Ovarian Epithelial/drug therapy , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Female , Humans , Nucleosides/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism
5.
Oncoimmunology ; 11(1): 2083755, 2022.
Article in English | MEDLINE | ID: mdl-35756843

ABSTRACT

PARP inhibitors are synthetically lethal with BRCA1/2 mutations, and in this setting, accumulation of DNA damage leads to cell death. Because increased DNA damage and subsequent immune activation can prime an anti-tumor immune response, we studied the impact of olaparib ± immune checkpoint blockade (ICB) on anti-tumor activity and the immune microenvironment. Concurrent combination of olaparib, at clinically relevant exposures, with ICB gave durable and deeper anti-tumor activity in the Brca1m BR5 model vs. monotherapies. Olaparib and combination treatment modulated the immune microenvironment, including increases in CD8+ T cells and NK cells, and upregulation of immune pathways, including type I IFN and STING signaling. Olaparib also induced a dose-dependent upregulation of immune pathways, including JAK/STAT, STING and type I IFN, in the tumor cell compartment of a BRCA1m (HBCx-10) but not a BRCA WT (HBCx-9) breast PDX model. In vitro, olaparib induced BRCAm tumor cell-specific dendritic cell transactivation. Relevance to human disease was assessed using patient samples from the MEDIOLA (NCT02734004) trial, which showed increased type I IFN, STING, and JAK/STAT pathway expression following olaparib treatment, in line with preclinical findings. These data together provide evidence for a mechanism and schedule underpinning potential benefit of ICB combination with olaparib.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Clinical Trials as Topic , Female , Humans , Immunity , Janus Kinases/metabolism , Janus Kinases/pharmacology , Janus Kinases/therapeutic use , Ovarian Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , STAT Transcription Factors/metabolism , STAT Transcription Factors/pharmacology , STAT Transcription Factors/therapeutic use , Signal Transduction , Tumor Microenvironment
6.
Cancer Res ; 82(6): 1140-1152, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35078817

ABSTRACT

AZD6738 (ceralasertib) is a potent and selective orally bioavailable inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase. ATR is activated in response to stalled DNA replication forks to promote G2-M cell-cycle checkpoints and fork restart. Here, we found AZD6738 modulated CHK1 phosphorylation and induced ATM-dependent signaling (pRAD50) and the DNA damage marker γH2AX. AZD6738 inhibited break-induced replication and homologous recombination repair. In vitro sensitivity to AZD6738 was elevated in, but not exclusive to, cells with defects in the ATM pathway or that harbor putative drivers of replication stress such as CCNE1 amplification. This translated to in vivo antitumor activity, with tumor control requiring continuous dosing and free plasma exposures, which correlated with induction of pCHK1, pRAD50, and γH2AX. AZD6738 showed combinatorial efficacy with agents associated with replication fork stalling and collapse such as carboplatin and irinotecan and the PARP inhibitor olaparib. These combinations required optimization of dose and schedules in vivo and showed superior antitumor activity at lower doses compared with that required for monotherapy. Tumor regressions required at least 2 days of daily dosing of AZD6738 concurrent with carboplatin, while twice daily dosing was required following irinotecan. In a BRCA2-mutant patient-derived triple-negative breast cancer (TNBC) xenograft model, complete tumor regression was achieved with 3 to5 days of daily AZD6738 per week concurrent with olaparib. Increasing olaparib dosage or AZD6738 dosing to twice daily allowed complete tumor regression even in a BRCA wild-type TNBC xenograft model. These preclinical data provide rationale for clinical evaluation of AZD6738 as a monotherapy or combinatorial agent. SIGNIFICANCE: This detailed preclinical investigation, including pharmacokinetics/pharmacodynamics and dose-schedule optimizations, of AZD6738/ceralasertib alone and in combination with chemotherapy or PARP inhibitors can inform ongoing clinical efforts to treat cancer with ATR inhibitors.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Ataxia Telangiectasia Mutated Proteins/metabolism , Carboplatin , Humans , Indoles , Irinotecan , Morpholines/pharmacology , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Sulfoxides/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics
7.
Nat Metab ; 2(4): 335-350, 2020 04.
Article in English | MEDLINE | ID: mdl-32694609

ABSTRACT

Plasticity of cancer metabolism can be a major obstacle to efficient targeting of tumour-specific metabolic vulnerabilities. Here, we identify the compensatory mechanisms following the inhibition of major pathways of central carbon metabolism in c-MYC-induced liver tumours. We find that, while inhibition of both glutaminase isoforms (Gls1 and Gls2) in tumours considerably delays tumourigenesis, glutamine catabolism continues, owing to the action of amidotransferases. Synergistic inhibition of both glutaminases and compensatory amidotransferases is required to block glutamine catabolism and proliferation of mouse and human tumour cells in vitro and in vivo. Gls1 deletion is also compensated for by glycolysis. Thus, co-inhibition of Gls1 and hexokinase 2 significantly affects Krebs cycle activity and tumour formation. Finally, the inhibition of biosynthesis of either serine (Psat1-KO) or fatty acid (Fasn-KO) is compensated for by uptake of circulating nutrients, and dietary restriction of both serine and glycine or fatty acids synergistically suppresses tumourigenesis. These results highlight the high flexibility of tumour metabolism and demonstrate that either pharmacological or dietary targeting of metabolic compensatory mechanisms can improve therapeutic outcomes.


Subject(s)
Liver Neoplasms/metabolism , Animals , Cell Proliferation , Glucose/metabolism , Glutaminase/antagonists & inhibitors , Glutaminase/genetics , Glutamine/metabolism , Humans , Liver Neoplasms/pathology , Mice , Proto-Oncogene Proteins c-myc/metabolism
8.
Oncogene ; 39(25): 4869-4883, 2020 06.
Article in English | MEDLINE | ID: mdl-32444694

ABSTRACT

The poly (ADP-ribose) polymerase (PARP) inhibitor olaparib is FDA approved for the treatment of BRCA-mutated breast, ovarian and pancreatic cancers. Olaparib inhibits PARP1/2 enzymatic activity and traps PARP1 on DNA at single-strand breaks, leading to replication-induced DNA damage that requires BRCA1/2-dependent homologous recombination repair. Moreover, DNA damage response pathways mediated by the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia mutated and Rad3-related (ATR) kinases are hypothesised to be important survival pathways in response to PARP-inhibitor treatment. Here, we show that olaparib combines synergistically with the ATR-inhibitor AZD6738 (ceralasertib), in vitro, leading to selective cell death in ATM-deficient cells. We observe that 24 h olaparib treatment causes cells to accumulate in G2-M of the cell cycle, however, co-administration with AZD6738 releases the olaparib-treated cells from G2 arrest. Selectively in ATM-knockout cells, we show that combined olaparib/AZD6738 treatment induces more chromosomal aberrations and achieves this at lower concentrations and earlier treatment time-points than either monotherapy. Furthermore, single-agent olaparib efficacy in vitro requires PARP inhibition throughout multiple rounds of replication. Here, we demonstrate in several ATM-deficient cell lines that the olaparib and AZD6738 combination induces cell death within 1-2 cell divisions, suggesting that combined treatment could circumvent the need for prolonged drug exposure. Finally, we demonstrate in vivo combination activity of olaparib and AZD6738 in xenograft and PDX mouse models with complete ATM loss. Collectively, these data provide a mechanistic understanding of combined PARP and ATR inhibition in ATM-deficient models, and support the clinical development of AZD6738 in combination with olaparib.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/deficiency , Genomic Instability/drug effects , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Pyrimidines/pharmacology , Sulfoxides/pharmacology , A549 Cells , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Death/drug effects , Cell Line , Cell Line, Tumor , Chromosome Aberrations/drug effects , Drug Synergism , Humans , Indoles , Mice , Morpholines , Sulfonamides
9.
Sci Rep ; 10(1): 6178, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32277094

ABSTRACT

Phenotypic plasticity, the ability of a living organism to respond to the environment, can lead to conclusions from experiments that are idiosyncratic to a particular environment. The level of environmental responsiveness can result in difficulties in reproducing studies from the same institute with the same standardised environment. Here we present a multi-batch approach to in-vivo studies to improve replicability of the results for a defined environment. These multi-batch experiments consist of small independent mini-experiments where the data are combined in an integrated data analysis to appropriately assess the treatment effect after accounting for the structure in the data. We demonstrate the method on two case studies with syngeneic tumour models which are challenging due to high variability both within and between studies. Through simulations and discussions, we explore several data analysis options and the optimum design that balances practical constraints of working with animals versus sensitivity and replicability. Through the increased confidence from the multi-batch design, we reduce the need to replicate the experiment, which can reduce the total number of animals used.


Subject(s)
Data Analysis , Disease Models, Animal , Neoplasms/pathology , Animals , Cell Line, Tumor/transplantation , Female , Mice , Pilot Projects , Reproducibility of Results , Sample Size
10.
PLoS One ; 14(10): e0216690, 2019.
Article in English | MEDLINE | ID: mdl-31609977

ABSTRACT

INTRODUCTION: In oncological drug development, animal studies continue to play a central role in which the volume of subcutaneous tumours is monitored to assess the efficacy of new drugs. The tumour volume is estimated by taking the volume to be that of a regular spheroid with the same dimensions. However, this method is subjective, insufficiently traceable, and is subject to error in the accuracy of volume estimates as tumours are frequently irregular. METHODS & RESULTS: This paper reviews the standard technique for tumour volume assessment, calliper measurements, by conducting a statistical review of a large dataset consisting of 2,500 tumour volume measurements from 1,600 mice by multiple operators across 6 mouse strains and 20 tumour models. Additionally, we explore the impact of six different tumour morphologies on volume estimation and the detection of treatment effects using a computational tumour growth model. Finally, we propose an alternative method to callipers for estimating volume-BioVolumeTM, a 3D scanning technique. BioVolume simultaneously captures both stereo RGB (Red, Green and Blue) images from different light sources and infrared thermal images of the tumour in under a second. It then detects the tumour region automatically and estimates the tumour volume in under a minute. Furthermore, images can be processed in parallel within the cloud and so the time required to process multiple images is similar to that required for a single image. We present data of a pre-production unit test consisting of 297 scans from over 120 mice collected by four different operators. CONCLUSION: This work demonstrates that it is possible to record tumour measurements in a rapid minimally invasive, morphology-independent way, and with less human-bias compared to callipers, whilst also improving data traceability. Furthermore, the images collected by BioVolume may be useful, for example, as a source of biomarkers for animal welfare and secondary drug toxicity / efficacy.


Subject(s)
Image Processing, Computer-Assisted , Neoplasms, Experimental/pathology , Tumor Burden , Animals , Humans , Mice
11.
J Med Chem ; 62(14): 6540-6560, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31199640

ABSTRACT

Tumors have evolved a variety of methods to reprogram conventional metabolic pathways to favor their own nutritional needs, including glutaminolysis, the first step of which is the hydrolysis of glutamine to glutamate by the amidohydrolase glutaminase 1 (GLS1). A GLS1 inhibitor could potentially target certain cancers by blocking the tumor cell's ability to produce glutamine-derived nutrients. Starting from the known GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide, we describe the medicinal chemistry evolution of a series from lipophilic inhibitors with suboptimal physicochemical and pharmacokinetic properties to cell potent examples with reduced molecular weight and lipophilicity, leading to compounds with greatly improved oral exposure that demonstrate in vivo target engagement accompanied by activity in relevant disease models.


Subject(s)
Antineoplastic Agents/pharmacology , Glutaminase/antagonists & inhibitors , Neoplasms/drug therapy , Pyridazines/pharmacology , Thiadiazoles/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Biological Availability , Cell Line, Tumor , Drug Discovery , Glutaminase/metabolism , Humans , Male , Mice, SCID , Molecular Docking Simulation , Neoplasms/metabolism , Neoplasms/pathology , Pyridazines/chemistry , Pyridazines/pharmacokinetics , Pyridazines/therapeutic use , Thiadiazoles/chemistry , Thiadiazoles/pharmacokinetics , Thiadiazoles/therapeutic use
12.
Cancer Res ; 79(14): 3762-3775, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31123088

ABSTRACT

DNA damage checkpoint kinases ATR and WEE1 are among key regulators of DNA damage response pathways protecting cells from replication stress, a hallmark of cancer that has potential to be exploited for therapeutic use. ATR and WEE1 inhibitors are in early clinical trials and success will require greater understanding of both their mechanism of action and biomarkers for patient selection. Here, we report selective antitumor activity of ATR and WEE1 inhibitors in a subset of non-germinal center B-cell (GCB) diffuse large B-cell lymphoma (DLBCL) cell lines, characterized by high MYC protein expression and CDKN2A/B deletion. Activity correlated with the induction of replication stress, indicated by increased origin firing and retardation of replication fork progression. However, ATR and WEE1 inhibitors caused different amounts of DNA damage and cell death in distinct phases of the cell cycle, underlying the increased potency observed with WEE1 inhibition. ATR inhibition caused DNA damage to manifest as 53BP1 nuclear bodies in daughter G1 cells leading to G1 arrest, whereas WEE1 inhibition caused DNA damage and arrest in S phase, leading to earlier onset apoptosis. In vivo xenograft DLBCL models confirmed differences in single-agent antitumor activity, but also showed potential for effective ATR inhibitor combinations. Importantly, insights into the different inhibitor mechanisms may guide differentiated clinical development strategies aimed at exploiting specific vulnerabilities of tumor cells while maximizing therapeutic index. Our data therefore highlight clinical development opportunities for both ATR and WEE1 inhibitors in non-GCB DLBCL subtypes that represent an area of unmet clinical need. SIGNIFICANCE: ATR and WEE1 inhibitors demonstrate effective antitumor activity in preclinical models of DLBCL associated with replication stress, but new mechanistic insights and biomarkers of response support a differentiated clinical development strategy.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Cell Cycle Proteins/antagonists & inhibitors , DNA Replication/drug effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrimidinones/pharmacology , Sulfoxides/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p15/deficiency , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p16/deficiency , Cyclin-Dependent Kinase Inhibitor p16/genetics , Enzyme Inhibitors/pharmacology , Female , Humans , Indoles , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Morpholines , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-myc/biosynthesis , Proto-Oncogene Proteins c-myc/genetics , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Pyrimidinones/administration & dosage , Sulfonamides , Sulfoxides/administration & dosage , Xenograft Model Antitumor Assays
13.
Br J Cancer ; 119(10): 1233-1243, 2018 11.
Article in English | MEDLINE | ID: mdl-30385821

ABSTRACT

BACKGROUND: AZD0156 and AZD6738 are potent and selective inhibitors of ataxia-telangiectasia-kinase (ATM) and ataxia-telangiectasia-mutated and Rad3-related (ATR), respectively, important sensors/signallers of DNA damage. METHODS: We used multiplexed targeted-mass-spectrometry to select pRAD50(Ser635) as a pharmacodynamic biomarker for AZD0156-mediated ATM inhibition from a panel of 45 peptides, then developed and tested a clinically applicable immunohistochemistry assay for pRAD50(Ser635) detection in FFPE tissue. RESULTS: We found moderate pRAD50 baseline levels across cancer indications. pRAD50 was detectable in 100% gastric cancers (n = 23), 99% colorectal cancers (n = 102), 95% triple-negative-breast cancers (TNBC) (n = 40) and 87.5% glioblastoma-multiformes (n = 16). We demonstrated AZD0156 target inhibition in TNBC patient-derived xenograft models; where AZD0156 monotherapy or post olaparib treatment, resulted in a 34-72% reduction in pRAD50. Similar inhibition of pRAD50 (68%) was observed following ATM inhibitor treatment post irinotecan in a colorectal cancer xenograft model. ATR inhibition, using AZD6738, increased pRAD50 in the ATM-proficient models whilst in ATM-deficient models the opposite was observed, suggesting pRAD50 pharmacodynamics post ATR inhibition may be ATM-dependent and could be useful to determine ATM functionality in patients treated with ATR inhibitors. CONCLUSION: Together these data support clinical utilisation of pRAD50 as a biomarker of AZD0156 and AZD6738 pharmacology to elucidate clinical pharmacokinetic/pharmacodynamic relationships, thereby informing recommended Phase 2 dose/schedule.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Mass Spectrometry/methods , Animals , Antineoplastic Agents/pharmacology , Ataxia Telangiectasia Mutated Proteins/metabolism , Biomarkers/metabolism , Cell Line , DNA Damage , Humans , Immunohistochemistry , Indoles , Irinotecan/pharmacology , Mice , Mice, Nude , Morpholines , Phthalazines/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Pyridines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Signal Transduction , Sulfonamides , Sulfoxides/pharmacology , Sulfoxides/therapeutic use , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays
14.
J Med Chem ; 61(22): 9889-9907, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30346772

ABSTRACT

The kinase ataxia telangiectasia mutated and rad3 related (ATR) is a key regulator of the DNA-damage response and the apical kinase which orchestrates the cellular processes that repair stalled replication forks (replication stress) and associated DNA double-strand breaks. Inhibition of repair pathways mediated by ATR in a context where alternative pathways are less active is expected to aid clinical response by increasing replication stress. Here we describe the development of the clinical candidate 2 (AZD6738), a potent and selective sulfoximine morpholinopyrimidine ATR inhibitor with excellent preclinical physicochemical and pharmacokinetic (PK) characteristics. Compound 2 was developed improving aqueous solubility and eliminating CYP3A4 time-dependent inhibition starting from the earlier described inhibitor 1 (AZ20). The clinical candidate 2 has favorable human PK suitable for once or twice daily dosing and achieves biologically effective exposure at moderate doses. Compound 2 is currently being tested in multiple phase I/II trials as an anticancer agent.


Subject(s)
Antineoplastic Agents/pharmacology , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Sulfoxides/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Chemical Phenomena , Clinical Trials as Topic , Female , Humans , Indoles , Mice , Models, Molecular , Molecular Conformation , Morpholines , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Sulfonamides , Sulfoxides/chemistry , Sulfoxides/pharmacokinetics , Tissue Distribution
15.
Cancer Cell ; 29(6): 832-845, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27265504

ABSTRACT

CXCR2 has been suggested to have both tumor-promoting and tumor-suppressive properties. Here we show that CXCR2 signaling is upregulated in human pancreatic cancer, predominantly in neutrophil/myeloid-derived suppressor cells, but rarely in tumor cells. Genetic ablation or inhibition of CXCR2 abrogated metastasis, but only inhibition slowed tumorigenesis. Depletion of neutrophils/myeloid-derived suppressor cells also suppressed metastasis suggesting a key role for CXCR2 in establishing and maintaining the metastatic niche. Importantly, loss or inhibition of CXCR2 improved T cell entry, and combined inhibition of CXCR2 and PD1 in mice with established disease significantly extended survival. We show that CXCR2 signaling in the myeloid compartment can promote pancreatic tumorigenesis and is required for pancreatic cancer metastasis, making it an excellent therapeutic target.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/drug therapy , Receptors, Interleukin-8B/genetics , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunotherapy , Mice , Neoplasm Metastasis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Prognosis , Receptors, Interleukin-8B/antagonists & inhibitors , Signal Transduction , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/pharmacology , Survival Analysis , Up-Regulation , Xenograft Model Antitumor Assays , Gemcitabine
16.
Cancer Res ; 76(11): 3307-18, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27020862

ABSTRACT

Fulvestrant is an estrogen receptor (ER) antagonist administered to breast cancer patients by monthly intramuscular injection. Given its present limitations of dosing and route of administration, a more flexible orally available compound has been sought to pursue the potential benefits of this drug in patients with advanced metastatic disease. Here we report the identification and characterization of AZD9496, a nonsteroidal small-molecule inhibitor of ERα, which is a potent and selective antagonist and downregulator of ERα in vitro and in vivo in ER-positive models of breast cancer. Significant tumor growth inhibition was observed as low as 0.5 mg/kg dose in the estrogen-dependent MCF-7 xenograft model, where this effect was accompanied by a dose-dependent decrease in PR protein levels, demonstrating potent antagonist activity. Combining AZD9496 with PI3K pathway and CDK4/6 inhibitors led to further growth-inhibitory effects compared with monotherapy alone. Tumor regressions were also seen in a long-term estrogen-deprived breast model, where significant downregulation of ERα protein was observed. AZD9496 bound and downregulated clinically relevant ESR1 mutants in vitro and inhibited tumor growth in an ESR1-mutant patient-derived xenograft model that included a D538G mutation. Collectively, the pharmacologic evidence showed that AZD9496 is an oral, nonsteroidal, selective estrogen receptor antagonist and downregulator in ER(+) breast cells that could provide meaningful benefit to ER(+) breast cancer patients. AZD9496 is currently being evaluated in a phase I clinical trial. Cancer Res; 76(11); 3307-18. ©2016 AACR.


Subject(s)
Breast Neoplasms/drug therapy , Cinnamates/pharmacology , Estrogen Receptor Modulators/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/genetics , Indoles/pharmacology , Mutation/genetics , Administration, Oral , Animals , Apoptosis/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cinnamates/administration & dosage , Drug Evaluation, Preclinical , Estrogen Receptor Modulators/administration & dosage , Estrogen Receptor alpha/chemistry , Female , Humans , Indoles/administration & dosage , Mice , Mice, Inbred NOD , Mice, SCID , Protein Conformation , Rats , Tumor Cells, Cultured , Uterus/metabolism , Uterus/pathology , Xenograft Model Antitumor Assays
17.
Toxicol Pathol ; 44(1): 98-111, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26534939

ABSTRACT

The growth plate, ovary, adrenal gland, and rodent incisor tooth are sentinel organs for antiangiogenic effects since they respond reliably, quantitatively, and sensitively to inhibition of the vascular endothelial growth factor receptor (VEGFR). Here we report that treatment of rats with platelet-derived growth factor receptor beta (PDGFRß) inhibitors that target pericytes results in severe ovarian hemorrhage with degeneration and eventual rupture of the corpus luteum. Evaluation of the growth plate, adrenal gland, and incisor tooth that are typical target organs for antiangiogenic treatment in the rodent revealed no abnormalities. Histologically, the changes in the ovary were characterized by sinusoidal dilatation, increased vessel fragility, and hemorrhage into the corpus luteum. Immunocytochemical staining of vessels with alpha smooth muscle actin and CD31 that recognize pericytes and vascular endothelium, respectively, demonstrated that this effect was due to selective pericyte deficiency within corpora lutea. Further experiments in which rats were treated concurrently with both PDGFRß and VEGFR inhibitors ablated the hemorrhagic response, resulting instead in corpus luteum necrosis. These changes are consistent with the notion that selective pericyte loss in the primitive capillary network resulted in increased vessel fragility and hemorrhage, whereas concomitant VEGFR inhibition resulted in vessel regression and reduced vascular perfusion that restricted development of the hemorrhagic vessels. These results also highlight the utility of the rodent ovary to respond differentially to VEGFR and PDGFR inhibitors, which may provide useful information during routine safety assessment for determining target organ toxicity.


Subject(s)
Corpus Luteum/drug effects , Hemorrhage/chemically induced , Ovary/drug effects , Pericytes/drug effects , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Actins/metabolism , Animals , Corpus Luteum/physiopathology , Female , Histocytochemistry , Ovary/pathology , Ovary/physiopathology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Wistar
18.
J Med Chem ; 58(20): 8128-40, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26407012

ABSTRACT

The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described. A directed screen identified the 1-aryl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole motif as a novel, druglike ER ligand. Aided by crystal structures of novel ligands bound to an ER construct, medicinal chemistry iterations led to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (30b, AZD9496), a clinical candidate with high oral bioavailability across preclinical species that is currently being evaluated in phase I clinical trials for the treatment of advanced estrogen receptor (ER) positive breast cancer.


Subject(s)
Antineoplastic Agents/metabolism , Cinnamates/chemistry , Cinnamates/metabolism , Estrogen Antagonists/chemical synthesis , Estrogen Antagonists/pharmacology , Estrogen Receptor Modulators/chemical synthesis , Estrogen Receptor Modulators/pharmacology , Indoles/chemistry , Indoles/metabolism , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Clinical Trials, Phase I as Topic , Down-Regulation/drug effects , Drug Design , Female , Humans , Injections, Intramuscular , X-Ray Diffraction
19.
Mol Cancer Ther ; 10(5): 861-73, 2011 May.
Article in English | MEDLINE | ID: mdl-21441409

ABSTRACT

Cediranib is a potent inhibitor of the VEGF receptor (VEGFR)-2 and VEGFR-3 tyrosine kinases. This study assessed the activity of cediranib against the VEGFR-1 tyrosine kinase and the platelet-derived growth factor receptor (PDGFR)-associated kinases c-Kit, PDGFR-α, and PDGFR-ß. Cediranib inhibited VEGF-A-stimulated VEGFR-1 activation in AG1-G1-Flt1 cells (IC(50) = 1.2 nmol/L). VEGF-A induced greatest phosphorylation of VEGFR-1 at tyrosine residues Y1048 and Y1053; this was reversed by cediranib. Potency against VEGFR-1 was comparable with that previously observed versus VEGFR-2 and VEGFR-3. Cediranib also showed significant activity against wild-type c-Kit in cellular phosphorylation assays (IC(50) = 1-3 nmol/L) and in a stem cell factor-induced proliferation assay (IC(50) = 13 nmol/L). Furthermore, phosphorylation of wild-type c-Kit in NCI-H526 tumor xenografts was reduced markedly following oral administration of cediranib (≥1.5 mg/kg/d) to tumor-bearing nude mice. The activity of cediranib against PDGFR-ß and PDGFR-α was studied in tumor cell lines, vascular smooth muscle cells (VSMC), and a fibroblast line using PDGF-AA and PDGF-BB ligands. Both receptor phosphorylation (IC(50) = 12-32 nmol/L) and PDGF-BB-stimulated cellular proliferation (IC(50) = 32 nmol/L in human VSMCs; 64 nmol/L in osteosarcoma cells) were inhibited. In vivo, ligand-induced PDGFR-ß phosphorylation in murine lung tissue was inhibited by 55% following treatment with cediranib at 6 mg/kg but not at 3 mg/kg or less. In contrast, in C6 rat glial tumor xenografts in mice, ligand-induced phosphorylation of both PDGFR-α and PDGFR-ß was reduced by 46% to 61% with 0.75 mg/kg cediranib. Additional selectivity was showed versus Flt-3, CSF-1R, EGFR, FGFR1, and FGFR4. Collectively, these data indicate that cediranib is a potent pan-VEGFR kinase inhibitor with similar activity against c-Kit but is significantly less potent than PDGFR-α and PDGFR-ß.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Animals , COS Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Chlorocebus aethiops , HEK293 Cells , Humans , Ligands , Lung/drug effects , Mice , Mice, Nude , NIH 3T3 Cells , Phosphorylation/drug effects , Platelet-Derived Growth Factor/metabolism , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Quinazolines/chemistry , Rats , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Stem Cell Factor/metabolism , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/antagonists & inhibitors
20.
Neoplasia ; 9(5): 382-91, 2007 May.
Article in English | MEDLINE | ID: mdl-17534443

ABSTRACT

Magnetic resonance imaging (MRI) can measure the effects of therapies targeting the tumor vasculature and has demonstrated that vascular-damaging agents (VDA) induce acute vascular shutdown in tumors in human and animal models. However, at subtherapeutic doses, blood flow may recover before the induction of significant levels of necrosis. We present the relationship between changes in MRI biomarkers and tumor necrosis. Multiple MRI measurements were taken at 4.7 T in athymic rats (n = 24) bearing 1.94 +/- 0.2-cm3 subcutaneous Hras5 tumors (ATCC 41000) before and 24 hours after clinically relevant doses of the VDA, ZD6126 (0-10 mg/kg, i.v.). We measured effective transverse relaxation rate (R2*), initial area under the gadolinium concentration-time curve (IAUGC(60/150)), equivalent enhancing fractions (EHF(60/150)), time constant (K(trans)), proportion of hypoperfused voxels as estimated from fit failures in K(trans) analysis, and signal intensity (SI) in T2-weighted MRI (T(2)W). ZD6126 treatment induced > 90% dose-dependent tumor necrosis at 10 mg/kg; correspondingly, SI changes were evident from T2W MRI. Although R2* did not correlate, other MRI biomarkers significantly correlated with necrosis at doses of > or = 5 mg/kg ZD6126. These data on Hras5 tumors suggest that the quantification of hypoperfused voxels might provide a useful biomarker of tumor necrosis.


Subject(s)
Magnetic Resonance Imaging , Neoplasms, Experimental/drug therapy , Organophosphorus Compounds/therapeutic use , Animals , Biomarkers , Dose-Response Relationship, Drug , Genes, ras , Male , Mice , NIH 3T3 Cells , Necrosis , Neoplasm Transplantation , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/pathology , Rats , Rats, Nude , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...