Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Cells Tissues Organs ; 212(2): 138-146, 2023.
Article in English | MEDLINE | ID: mdl-34915475

ABSTRACT

Until September 2021, the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2; COVID-19) pandemic caused over 217 million infections and over 4.5 million deaths. In pregnant women, the risk factors for the need of intensive care treatment are generally the same as in the overall population. Of note, COVID-19-positive women deliver earlier than COVID-19-negative women, and the risk for severe neonatal and perinatal morbidity and mortality is significantly higher. The probability and pathways of vertical transmission of the virus from the pregnant woman to the fetus are highly controversial. Recent data have shown that 54 (13%) of 416 neonates born to COVID-19-positive women were infected. Here, we investigated term placentas collected before the SARS-CoV-2 pandemic and studied the main COVID-19 receptors angiotensin-converting enzyme 2 (ACE2), transmembrane protease serine subtype 2 (TMPRSS2), as well as neuropilin 1 (NRP1). We performed real-time PCR and immunofluorescence on cryosections in combination with markers for syncytiotrophoblast, endothelial cells, macrophages and stromal cells. The PCR studies showed expression of both the truncated delta form of ACE2, which does not bind the COVID-19 spike protein, and the long form. The ACE2 antibody used does not distinguish between the two forms. We did not observe expression of the canonical SARS-CoV-2 entry machinery on syncytio- and cytotrophoblast. ACE2 and TMPRSS2 are co-expressed in a subpopulation of stromal cells, which in part are CD68-positive macrophages. NRP1 is localized to endothelial cells. In sum, the term placenta is not an organ that directly favors vertical transmission of COVID-19; however, microtraumas and placentitis may weaken its barrier function.


Subject(s)
COVID-19 , SARS-CoV-2 , Infant, Newborn , Humans , Female , Pregnancy , Angiotensin-Converting Enzyme 2 , Endothelial Cells , Placenta , Fluorescent Antibody Technique
2.
Dev Dyn ; 252(2): 227-238, 2023 02.
Article in English | MEDLINE | ID: mdl-35137473

ABSTRACT

BACKGROUND: Initial lymphatic vessels do not have a continuous basement membrane. Therefore, the ability of lymphatic endothelial cells (LECs) to produce extracellular matrix (ECM) has received little attention. Untreated lymphedema is a chronic disease that progresses to massive fibrosclerosis in advanced stages. Expansion of the intercellular space and fibrosclerosis cause hypoxia, which also affects the LECs. RESULTS: We studied the expression of genes in human LECs in vitro by RNA sequencing, analyzed the effects of hypoxia (1% O2 ) vs. normoxia (21% O2 ), and focused on ECM genes. LECs express fibrillin-1 and many typical components of a basement membrane such as type IV, VIII, and XVIII collagen, laminin ß1, ß2, and α4, perlecan, and fibronectin. Under hypoxia, we found significant upregulation of expression of genes controlling hydroxylation of procollagen (PLOD2, P4HA1), and also cross-linking, bundling, and stabilization of collagen fibrils and fibers. Also striking was the highly significant downregulation of elastin expression, whereas fibulin-5, which controls the assembly of tropoelastin monomers, was upregulated under hypoxia. In the dermis from genital lymphedema, we observed significant PLOD2 expression in initial lymphatics. CONCLUSIONS: Overall, hypoxia results in the picture of a dysregulated ECM production of LECs, which might be partly responsible for the progression of fibrosclerosis in lymphedema.


Subject(s)
Endothelial Cells , Lymphedema , Humans , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Laminin/metabolism , Hypoxia/metabolism , Lymphedema/metabolism
3.
BMC Cancer ; 22(1): 1193, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36402986

ABSTRACT

The incidence of primary liver tumors, hepatocellular carcinoma (HCC), intrahepatic cholangiocellular carcinoma (ICC), and combined HCC/ICC (cHCC/CC) is increasing. For ICC, targeted therapy exists only for a small subpopulation of patients, while for HCC, Sorafenib and Lenvatinib are in use. Diagnosis of cHCC/CC is a great challenge and its incidence is underestimated, bearing the risk of unintended non-treatment of ICC. Here, we investigated effects of targeted inhibitors on human ICC cell lines (HUH28, RBE, SSP25), in comparison to extrahepatic (E)CC lines (EGI1, CCC5, TFK1), and HCC/hepatoblastoma cell lines (HEP3B, HUH7, HEPG2). Cells were challenged with: AKT inhibitor MK-2206; multikinase inhibitors Sorafenib, Lenvatinib and Dasatinib; PI3-kinase inhibitors BKM-120, Wortmannin, LY294002, and CAL-101; and mTOR inhibitor Rapamycin. Dosage of the substances was based on the large number of published data of recent years. Proliferation was analyzed daily for four days. All cell lines were highly responsive to MK-2206. Thereby, MK-2206 reduced expression of phospho(p)-AKT in all ICC, ECC, and HCC lines, which mostly corresponded to reduction of p-mTOR, whereas p-ERK1/2 was upregulated in many cases. Lenvatinib showed inhibitory effects on the two HCC cell lines, but not on HEPG2, ICCs and ECCs. Sorafenib inhibited proliferation of all cells, except the ECC line CCC5. However, at reduced dosage, we observed increased cell numbers in some ICC experiments. Dasatinib was highly effective especially in ICC cell lines. Inhibitory effects were observed with all four PI3-kinase inhibitors. However, cell type-specific differences were also evident here. Rapamycin was most effective in the two HCC cell lines. Our studies show that the nine inhibitors differentially target ICC, ECC, and HCC/hepatoblastoma lines. Caution should be taken with Lenvatinib and Sorafenib administration in patients with cHCC/CC as the drugs may have no effects on, or might even stimulate, ICC.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Hepatoblastoma , Liver Neoplasms , Humans , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , Sorafenib/pharmacology , Sorafenib/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Dasatinib/therapeutic use , Cholangiocarcinoma/pathology , Phosphatidylinositol 3-Kinases , Sirolimus/pharmacology , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology
4.
Cell Biosci ; 12(1): 157, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109802

ABSTRACT

Almost 400 years after the (re)discovery of the lymphatic vascular system (LVS) by Gaspare Aselli (Asellius G. De lactibus, sive lacteis venis, quarto vasorum mesaraicorum genere, novo invento Gasparis Asellii Cremo. Dissertatio. (MDCXXIIX), Milan; 1628.), structure, function, development and evolution of this so-called 'second' vascular system are still enigmatic. Interest in the LVS was low because it was (and is) hardly visible, and its diseases are not as life-threatening as those of the blood vascular system. It is not uncommon for patients with lymphedema to be told that yes, they can live with it. Usually, the functions of the LVS are discussed in terms of fluid homeostasis, uptake of chylomicrons from the gut, and immune cell circulation. However, the broad molecular equipment of lymphatic endothelial cells suggests that they possess many more functions, which are also reflected in the pathophysiology of the system. With some specific exceptions, lymphatics develop in all organs. Although basic structure and function are the same regardless their position in the body wall or the internal organs, there are important site-specific characteristics. We discuss common structure and function of lymphatics; and point to important functions for hyaluronan turn-over, salt balance, coagulation, extracellular matrix production, adipose tissue development and potential appetite regulation, and the influence of hypoxia on the regulation of these functions. Differences with respect to the embryonic origin and molecular equipment between somatic and splanchnic lymphatics are discussed with a side-view on the phylogeny of the LVS. The functions of the lymphatic vasculature are much broader than generally thought, and lymphatic research will have many interesting and surprising aspects to offer in the future.

5.
EMBO Rep ; 23(11): e54746, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36156348

ABSTRACT

Melanoma is the deadliest of skin cancers and has a high tendency to metastasize to distant organs. Calcium and metabolic signals contribute to melanoma invasiveness; however, the underlying molecular details are elusive. The MCU complex is a major route for calcium into the mitochondrial matrix but whether MCU affects melanoma pathobiology was not understood. Here, we show that MCUA expression correlates with melanoma patient survival and is decreased in BRAF kinase inhibitor-resistant melanomas. Knockdown (KD) of MCUA suppresses melanoma cell growth and stimulates migration and invasion. In melanoma xenografts, MCUA_KD reduces tumor volumes but promotes lung metastases. Proteomic analyses and protein microarrays identify pathways that link MCUA and melanoma cell phenotype and suggest a major role for redox regulation. Antioxidants enhance melanoma cell migration, while prooxidants diminish the MCUA_KD -induced invasive phenotype. Furthermore, MCUA_KD increases melanoma cell resistance to immunotherapies and ferroptosis. Collectively, we demonstrate that MCUA controls melanoma aggressive behavior and therapeutic sensitivity. Manipulations of mitochondrial calcium and redox homeostasis, in combination with current therapies, should be considered in treating advanced melanoma.


Subject(s)
Calcium , Melanoma , Humans , Calcium/metabolism , Proteomics , Melanoma/genetics , Melanoma/metabolism , Oxidation-Reduction , Phenotype , Cell Line, Tumor
6.
Mol Biol Cell ; 32(21): ar18, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34432484

ABSTRACT

Stress granules (SGs) are ribonucleoprotein functional condensates that form under stress conditions in all eukaryotic cells. Although their stress-survival function is far from clear, SGs have been implicated in the regulation of many vital cellular pathways. Consequently, SG dysfunction is thought to be a mechanistic point of origin for many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Additionally, SGs are thought to play a role in pathogenic pathways as diverse as viral infection and chemotherapy resistance. There is a growing consensus on the hypothesis that understanding the mechanistic regulation of SG physical properties is essential to understanding their function. Although the internal dynamics and condensation mechanisms of SGs have been broadly investigated, there have been fewer investigations into the timing of SG formation and clearance in live cells. Because the lifetime of SG persistence can be a key factor in their function and tendency toward pathological dysregulation, SG clearance mechanisms deserve particular attention. Here we show that resveratrol and its analogues piceatannol, pterostilbene, and 3,4,5,4'-tetramethoxystilbene induce G3BP-dependent SG formation with atypically rapid clearance kinetics. Resveratrol binds to G3BP, thereby reducing its protein-protein association valency. We suggest that altering G3BP valency is a pathway for the formation of uniquely transient SGs.


Subject(s)
DNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Resveratrol/pharmacology , Stress Granules/metabolism , Carrier Proteins/metabolism , Cell Line, Tumor , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , DNA Helicases/drug effects , HEK293 Cells , HeLa Cells , Humans , Kinetics , Poly-ADP-Ribose Binding Proteins/drug effects , RNA Helicases/drug effects , RNA Recognition Motif Proteins/drug effects , Ribonucleoproteins/metabolism , Stress Granules/drug effects
7.
Cells ; 10(5)2021 04 24.
Article in English | MEDLINE | ID: mdl-33923324

ABSTRACT

Lymphedema (LE) affects millions of people worldwide. It is a chronic progressive disease with massive development of fibrosclerosis when untreated. There is no pharmacological treatment of lymphedema. The disease is associated with swelling of the interstitium of the affected organ, mostly arm or leg, impressive development of adipose tissue, fibrosis and sclerosis with accumulation of huge amounts of collagen, and Papillomatosis cutis. Malnutrition and reduced oxygenation of the affected tissues is a hallmark of lymphedema. Here, we investigated if the hypoxia of lymphatic endothelial cells (LECs) might contribute to fibrosis. We applied RNASeq and qPCR to study the concordant changes of the exome of three human foreskin-derived LEC isolates after 4 days of hypoxia (1% O2) vs. normoxia (21% O2). Of the approximately 16,000 genes expressed in LECs, 162 (1%) were up- or down-regulated by hypoxia. Of these, 21 genes have important functions in the production or modification of the extracellular matrix (ECM). In addition to the down-regulation of elastin, we found up-regulation of druggable enzymes and regulators such as the long non-coding RNA H19, inter-alpha-trypsin inhibitor heavy chain family member 5 (ITIH5), lysyl-oxidase (LOX), prolyl 4-hydroxylase subunit alpha 1 (P4HA1), procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2), and others that are discussed in the paper. Initial lymphatics do not produce a continuous basement membrane; however, our study shows that hypoxic LECs have an unexpectedly high ability to alter the ECM.


Subject(s)
Endothelial Cells/pathology , Extracellular Matrix Proteins/metabolism , Extracellular Matrix/pathology , Hypoxia/physiopathology , Transcriptome , Cells, Cultured , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/genetics , Gene Expression Regulation , Humans
8.
Int J Cancer ; 148(10): 2608-2613, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33460449

ABSTRACT

A human cell line of neuroblastic tissue, which was believed to have been lost to science due to its unavailability in public repositories, is revived and reclassified. In the 1970s, a triple set of neuroblastoma (NB) cell lines became available for research as MYCN-amplified vs nonamplified models (CHP-126/-134 and CHP-100, respectively). Confusingly, CHP-100 was used in subsequent years as a model for NB and, since the 1990s, as a model for neuroepithelioma and later as a model for Ewing's sarcoma (ES), which inevitably led to non-reproducible results. A deposit at a bioresource center revealed that globally available stocks of CHP-100 were identical to the prominent NB cell line IMR-32 and CHP-100 was included into the list of misidentified cell lines. Now we report on the rediscovery of an authentic CHP-100 cell line and provide evidence of incorrect classification during establishment. We show that CHP-100 cells carry a t(11;22)(q24;q12) type II EWSR1-FLI1 fusion and identify it as a classic ES. Although the question of whether CHP-100 was a virtual and never existing cell line from the beginning is now clarified, the results of all relevant publications should be considered questionable. Neither the time of the cross-contamination event with IMR-32 is known nor was the final classification as a model for Ewing family of tumors available with an associated short tandem repeat profile. After a long road of errors and confusion, authentic CHP-100 is now characterized as a type II EWSR1-FLI1 fusion model 44 years after its establishment.

9.
Surg Radiol Anat ; 43(5): 775-784, 2021 May.
Article in English | MEDLINE | ID: mdl-33135107

ABSTRACT

The lower margin of the internal anal sphincter (IAS) is considered to lie on a J-shaped, subcutaneous part (SCP) of the external anal sphincter (EAS). The lower IAS is united with the J-shaped SCP to form a smooth-striated muscle complex. In the first part of this study, we ensured the presence of the J-shaped EAS in the lateral wall of the anal canal from 12 near-term fetuses. Second, in the lateral anal wall, the examination of the longitudinal section from 20 male and 24 female Japanese cadavers (72-95 years-old) demonstrated that the J-shaped EAS was lost in 15 (34%) due to the very small SCP. Third, we demonstrated that the J-shaped EAS was restricted in the latera anal wall using longitudinal histological sections of the anal canal from 11 male Japanese cadavers (75-89 years-old). Therefore, a site-dependent difference in the IAS-EAS configuration was evident. Finally, we compared a frequency of the lost J-shape between human populations using 10 mm-thick frontal slices from 36 Japanese and 28 German cadavers. The two groups of cadavers were compatible in age (a 0.2-years' difference in males). The macroscopic observations revealed that the J-shaped EAS was absent from 13 (36%) Japanese and six (20%) German specimens, suggesting that the SCP degeneration occurred more frequent in elderly Japanese than elderly German individuals (p < 0.05). The distal IAS-EAS complex seemed to push residual feces out of the anal canal at a transient phase from evacuation to closure. The absence might be the first sigh of anal dysfunction.


Subject(s)
Anal Canal/abnormalities , Muscle, Skeletal/abnormalities , Muscle, Smooth/abnormalities , Aged , Aged, 80 and over , Anal Canal/pathology , Anal Canal/physiopathology , Cadaver , Defecation/physiology , Female , Germany , Humans , Japan , Male , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscle, Smooth/pathology , Muscle, Smooth/physiopathology
10.
Invest Ophthalmol Vis Sci ; 61(12): 5, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33026455

ABSTRACT

Purpose: Many reports have described anomalous connections of the superior rectus (SR) with other extraocular rectus muscles, in which additional heads of the other three rectus muscles likely provided the connections. We examined how these connections are established during fetal development. Methods: We analyzed paraffin-embedded horizontal sections from 25 late-stage fetuses. Horizontal sections are best suited for understanding the mediolateral relationships of muscle origins. Results: We confirmed a common tendinous origin of the lateral rectus (LR), inferior rectus (IR) and medial rectus (MR) muscles that was separated from the SR origin. Notably, eight fetuses (32%) had tendinous or muscular connections between the SR and other rectus muscles that had one of four morphologies: (a) a thin tendon from the SR to the common tendon of the three rectus muscles (2 fetuses), (b) a thin tendon to the LR (one fetus), (c) a thin tendon to the inferior rectus muscle origin (two fetuses), and (d) SR muscle fibers arising from an additional head of the LR (three fetuses). Conclusions: The SR seemed to issue a thin tendon that passed along the inferior or lateral side of the oculomotor nerve. Conversely, the LR and inferior rectus muscle were likely to carry a supernumerary bundle that reached the SR. The accessory head of the medial rectus muscle showed a stable morphology in that it seemed to also provide an anomalous double head. However, the presence of an accessory head in the LR was rare. In contrast with our previously published diagram of the orbital apex, the accessory head of the medial rectus muscle passed along the lateral side of the superior oblique.


Subject(s)
Eye Abnormalities/embryology , Oculomotor Muscles/embryology , Tendons/embryology , Eye Abnormalities/pathology , Fetal Development , Gestational Age , Humans , Muscle Development , Oculomotor Muscles/abnormalities , Orbit/anatomy & histology , Orbit/embryology , Tendons/anatomy & histology
11.
J Anat ; 237(5): 854-860, 2020 11.
Article in English | MEDLINE | ID: mdl-32706936

ABSTRACT

Although left/right differences in a configuration of the pulmonary artery (PA) and its branches are well known, there is little information as to when and how such differences are established. Examination of serial sagittal sections of 25 embryos and fetuses at 6-7 weeks of gestation demonstrated that, at O'Rahilly stages 18-20, the right earliest first branch of PA originated in the anterior side of the upper lobar bronchus and overlay the upper bronchi, in contrast to the left branch which was located posteriorly and constricted medially by the upper posterior bronchus B1 + 2b. The right earliest branch was most likely to correspond to the future superior trunk, while the left branch might be a lingual artery. At stages 21-23, the upper posterior parenchyma was still underdeveloped in the left lung, since the ductus arteriosus and the left common cardinal vein seemed to make the left upper thoracic cavity narrow. Conversely, in the right lung, the thick S2 seemed to require a double arterial supply from both the superior and inferior arterial trunks. On the left, A3 originated at the lung apex and took a long descending course along the lung anterior surface. This high position of A3 might soon be corrected by an increased volume of S3. Overall, in contrast to the lower and middle lobes, early-developed branches of the PA did not accompany upper segmental and subsegmental bronchi. A mechanism "differential growth" seemed to explain how to correct the fetal morphology to provide the adult morphology with variations.


Subject(s)
Lung/blood supply , Pulmonary Artery/embryology , Humans , Lung/embryology
12.
BMC Pregnancy Childbirth ; 20(1): 380, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32600346

ABSTRACT

BACKGROUND: There has been debate about the existence of lymphatic vessels in placenta. Lymphatic endothelial cell (LEC) markers such as LYVE-1 and podoplanin/D2-40 have been found, although PROX1 has not been detected. The most reliable marker for LECs is the double staining for CD31 and PROX1, which has not been performed yet. METHODS: We studied three term placentas and dissected them into three areas: i.) basal plate area, ii.) intermediate area, and iii.) chorionic plate area. We used immunofluorescence single and double staining with antibodies against CD31, PROX1, LYVE-1, VEGFR-3, D2-40/PDPN, CD34, CCBE-1, and vimentin, as well as nested PCR, qPCR, Western blot and transmission electron microscopy (TEM). RESULTS: At TEM level we observed structures that have previously mistakenly been interpreted as lymphatics, however, we did not find any CD31/PROX1 double-positive cells in placenta. Absence of PROX1 was also noted by nested PCR, qPCR and Western blot. Also, LEC marker VEGFR-3 was expressed only in a small number of scattered leukocytes but was absent from vessels. The LEC marker D2-40/PDPN was expressed in most stromal cells, and the LEC marker LYVE-1 was found in a considerable number of stromal cells, but not in endothelial cells, which were positive for CD31, CD34, CCBE-1 and vimentin. Additionally, vimentin was found in stromal cells. CONCLUSIONS: Our studies clearly show absence of lymphatics in term placenta. We also show that the functional area of the mother's endometrium is not penetrated by lymphatics in term pregnancy.


Subject(s)
Lymphatic Vessels/anatomy & histology , Placenta/anatomy & histology , Biomarkers/analysis , Endometrium/anatomy & histology , Endothelial Cells , Female , Humans , Lymphatic Vessels/chemistry , Membrane Glycoproteins/analysis , Placenta/chemistry , Pregnancy , Transcription Factors , Vascular Endothelial Growth Factor Receptor-3
13.
J Anat ; 236(6): 1021-1034, 2020 06.
Article in English | MEDLINE | ID: mdl-32023665

ABSTRACT

Knowledge of the lung segment system is essential for understanding human anatomy and has great clinical relevance. The arrangement of 11 segments, including the S* or subsuperior segment, and its individual variations, are considered to be the same in fetal and adult lungs. The present study assessed the topographical anatomy of lower segmental and subsegmental bronchi by computer-assisted three-dimensional imaging of serial sagittal sections of both lungs of 22 embryos and fetuses of gestational age 6-7 weeks (crown-rump length 15.0-28.5 mm). Long inferior courses of B8b (basal) and B10c (medial) were observed in sagittal sections of both lungs. B8a (lateral) and B10b (lateral) in the right lungs were consistently underdeveloped, with S9 occupying most of the lateral half of the lower lobe. In some samples, B6b (lateral) did not reach the lateral surface. The lateral dominance of S9 was also seen in the left lungs. Some B* candidates were present, but B7 candidates were absent. Lateral and posterior expansions of S6b, S8a and S10b to cover S9 were observed in additional midterm and near-term lung sections, indicating that the original S9 dominance was 'corrected' by an increase in lung volume. Delayed growth of the lower lateral subsegments might induce mechanical stress, resulting in aberrant notches or fissures, such as those separating an independent posterior lobe. The segmental arrangement of fetal lungs was not stable, but was altered over a long fetal period after the complete subsegmental division of the bronchi, except for the minor bronchi B* and B7.


Subject(s)
Bronchi/anatomy & histology , Fetal Development/physiology , Lung/anatomy & histology , Adult , Fetus , Humans , Image Processing, Computer-Assisted
14.
Ann Anat ; 229: 151467, 2020 May.
Article in English | MEDLINE | ID: mdl-31978569

ABSTRACT

After the intracranial venous-drainage route is switched from the vena capitis prima (VCP) to the transverse sinus, the cavernous sinus is considered to develop from a connecting part of the VCP with the ophthalmic vein (OPV). Observations of histological sections from 12 embryos and 47 fetuses (6-35 weeks) demonstrated that (1) at six weeks, a major tributary of the VCP ran inferiorly in the plica ventralis at the mesencephalic flexure (future tentrium cerebelli) and merged with the OPV in the medial side of the trigeminal ganglion; (2) at seven weeks, being independent of the laterally located primary veins, the superior petrosal sinus (SPS) developed medially in the plica, ran superiorly, and appeared to make an initial confluence with the transverse sinus; (3) until 15-16 weeks, parasellar veins were limited to a few branches of the OPV without communication with the SPS on the lateral surface of the trigeminal ganglion; (4) after 15-16 weeks, parasellar veins increased in number and volume but did not yet drain into the SPS but rather into the newly built inferior petrosal sinus; and (5) near term, parasellar veins started venous drainage to the SPS, whereas few veins were evident around the intracavernous abducens nerve. Consequently, the inferior petrosal sinus might originate from a remnant of the VCP (the so-called pro-otic sinus), but after midterm, most parasellar veins appeared to develop from the OPV without any contribution of the SPS. These findings suggest that parasellar sinus-network might be established after birth.


Subject(s)
Cavernous Sinus/embryology , Fetus/blood supply , Humans , Veins/embryology
15.
Mol Oncol ; 14(3): 571-589, 2020 03.
Article in English | MEDLINE | ID: mdl-31825135

ABSTRACT

Macrophages (Mφ) are abundantly present in the tumor microenvironment and may predict outcome in solid tumors and defined lymphoma subtypes. Mφ heterogeneity, the mechanisms of their recruitment, and their differentiation into lymphoma-promoting, alternatively activated M2-like phenotypes are still not fully understood. Therefore, further functional studies are required to understand biological mechanisms associated with human tumor-associated Mφ (TAM). Here, we show that the global mRNA expression and protein abundance of human Mφ differentiated in Hodgkin lymphoma (HL)-conditioned medium (CM) differ from those of Mφ educated by conditioned media from diffuse large B-cell lymphoma (DLBCL) cells or, classically, by macrophage colony-stimulating factor (M-CSF). Conditioned media from HL cells support TAM differentiation through upregulation of surface antigens such as CD40, CD163, CD206, and PD-L1. In particular, RNA and cell surface protein expression of mannose receptor 1 (MRC1)/CD206 significantly exceed the levels induced by classical M-CSF stimulation in M2-like Mφ; this is regulated by interleukin 13 to a large extent. Functionally, high CD206 enhances mannose-dependent endocytosis and uptake of type I collagen. Together with high matrix metalloprotease9 secretion, HL-TAMs appear to be active modulators of the tumor matrix. Preclinical in ovo models show that co-cultures of HL cells with monocytes or Mφ support dissemination of lymphoma cells via lymphatic vessels, while tumor size and vessel destruction are decreased in comparison with lymphoma-only tumors. Immunohistology of human HL tissues reveals a fraction of cases feature large numbers of CD206-positive cells, with high MRC1 expression being characteristic of HL-stage IV. In summary, the lymphoma-TAM interaction contributes to matrix-remodeling and lymphoma cell dissemination.


Subject(s)
Culture Media, Conditioned/pharmacology , Hodgkin Disease/metabolism , Lymphoma, B-Cell/metabolism , Macrophages/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , Tumor Microenvironment , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , B7-H1 Antigen/metabolism , CD40 Antigens/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Chick Embryo , Chorioallantoic Membrane/metabolism , Chorioallantoic Membrane/pathology , Collagen Type I/metabolism , Culture Media, Conditioned/metabolism , Fluorescent Antibody Technique , Hodgkin Disease/immunology , Hodgkin Disease/pathology , Humans , Interleukin-13/metabolism , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , Macrophages/drug effects , Membrane Glycoproteins/immunology , Monocytes/metabolism , Neoplasm Metastasis/immunology , Proteome/genetics , Proteome/metabolism , RNA-Seq , Receptors, Cell Surface/metabolism , Receptors, Immunologic/immunology , Up-Regulation , Xenograft Model Antitumor Assays
16.
Ann Anat ; 228: 151438, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31726208

ABSTRACT

The inferior pharyngeal constrictor (IPC) originates from the thyroid and cricoid cartilages and inserts to the pharyngeal raphe. In serial sagittal sections of 37 embryos and fetuses at 6-15 weeks (crown rump length 15-115mm), we found (1) the IPC connecting to the sternothyroideus and thyrohyoideus muscles (16 fetuses at 6-11 weeks) or (2) the cricothyroideus muscle (6 fetuses at 12-15 weeks) in addition to the usual cricoid origin. These aberrant connections were most likely to be transient origins of the IPC not from a hard tissue but nearby striated muscles. In four of the latter six specimens, a tendinous band from the IPC inferior end connected to the cricothyroideus muscle to provide a digastric muscle-like appearance. These aberrant connections with nearby muscles seemed to become separated by a growing protrusion of the thyroid cartilage. Therefore, these aberrant origins were, even if developed, most likely to be "corrected" to the adult morphology during midterm or late prenatal period. The aberrant or transient origin of the IPC seemed to result from a discrepancy in growth of the cartilage and muscles. Such a discrepancy in growth seems to resemble the IPC wrapping around the superior cornu of thyroid cartilage. In addition, a final or adult-like morphology was found in two of the present 37 fetal specimens. It seemed to suggest a significant redundancy in growth rate of the laryngeal structures.


Subject(s)
Esophageal Sphincter, Upper/embryology , Fetus/anatomy & histology , Cricoid Cartilage/embryology , Humans , Laryngeal Cartilages/embryology , Laryngeal Muscles/embryology , Thyroid Gland/embryology
17.
Cancers (Basel) ; 11(8)2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31344919

ABSTRACT

Due to the lack of suitable in-vivo models, the etiology of intrahepatic cholangiocellular carcinoma (ICC) is poorly understood. We previously showed the involvement of platelet endothelial cell adhesion molecule-1 (Pecam-1/CD31) in acute liver damage. Here, we developed a model of ICC using thioacetamide (TAA) in drinking water of wild-type (WT)-mice and Pecam-1-knock-out (KO)-mice. Gross inspection and microscopy revealed liver-cirrhosis and ICC in both groups after 22 weeks of TAA. The severity of cirrhosis and ICC (Ck-19-positive) was reduced in Pecam-1 KO mice (stage-4 cirrhosis in WT vs. stage-3 in KO mice). Tumor networks (accompanied by neutrophils) were predominantly located in portal areas, with signs of epithelial-to-mesenchymal transition (EMT). In serum, TAA induced an increase in hepatic damage markers, with lower levels in Pecam-1 null mice. With qPCR of liver, elevated expression of Pecam-1 mRNA was noted in WT mice, in addition to Icam-1, EpCam, cytokines, cMyc, and Mmp2. Thereby, levels of EpCAM, cytokines, cMyc, and Mmp2 were significantly lower in Pecam-1 null mice. Lipocalin-2 and Ccl5 were elevated significantly in both WT and Pecam-1 null mice after TAA administration. Also, EMT marker Wnt5a (not Twist-1) was increased in both groups after TAA. We present a highly reproducible mouse model for ICC and show protective effects of Pecam-1 deficiency.

18.
Sci Rep ; 9(1): 4739, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30894622

ABSTRACT

Development of lymphatics takes place during embryogenesis, wound healing, inflammation, and cancer. We previously showed that Wnt5a is an essential regulator of lymphatic development in the dermis of mice, however, the mechanisms of action remained unclear. Here, whole-mount immunostaining shows that embryonic day (ED) 18.5 Wnt5a-null mice possess non-functional, cyst-like and often blood-filled lymphatics, in contrast to slender, interconnected lymphatic networks of Wnt5a+/- and wild-type (wt) mice. We then compared lymphatic endothelial cell (LEC) proliferation during ED 12.5, 14.5, 16.5 and 18.5 between Wnt5a-/-, Wnt5a+/- and wt-mice. We did not observe any differences, clearly showing that Wnt5a acts independently of proliferation. Transmission electron microscopy revealed multiple defects of LECs in Wnt5a-null mice, such as malformed inter-endothelial junctions, ruffled cell membrane, intra-luminal bulging of nuclei and cytoplasmic processes. Application of WNT5A protein to ex vivo cultures of dorsal thoracic dermis from ED 15.5 Wnt5a-null mice induced flow-independent development of slender, elongated lymphatic networks after 2 days, in contrast to controls showing an immature lymphatic plexus. Reversely, the application of the WNT-secretion inhibitor LGK974 on ED 15.5 wt-mouse dermis significantly prevented lymphatic network elongation. Correspondingly, tube formation assays with human dermal LECs in vitro revealed increased tube length after WNT5A application. To study the intracellular signaling of WNT5A we used LEC scratch assays. Thereby, inhibition of autocrine WNTs suppressed horizontal migration, whereas application of WNT5A to inhibitor-treated LECs promoted migration. Inhibition of the RHO-GTPase RAC, or the c-Jun N-terminal kinase JNK significantly reduced migration, whereas inhibitors of the protein kinase ROCK did not. WNT5A induced transient phosphorylation of JNK in LECs, which could be inhibited by RAC- and JNK-inhibitors. Our data show that WNT5A induces formation of elongated lymphatic networks through proliferation-independent WNT-signaling via RAC and JNK. Non-canonical WNT-signaling is a major mechanism of extension lymphangiogenesis, and also controls differentiation of lymphatics.


Subject(s)
JNK Mitogen-Activated Protein Kinases/metabolism , Lymphangiogenesis , Lymphatic System/cytology , Signal Transduction , Wnt Signaling Pathway/physiology , rac GTP-Binding Proteins/metabolism , Animals , Cell Differentiation , Humans , Lymphatic System/embryology , Mice , Mice, Knockout , Wnt-5a Protein/genetics
19.
J Cell Mol Med ; 23(5): 3336-3344, 2019 05.
Article in English | MEDLINE | ID: mdl-30761739

ABSTRACT

The mechanisms of radiation-induced liver damage are poorly understood. We investigated if tumour necrosis factor (TNF)-α acts synergistically with irradiation, and how its activity is influenced by platelet endothelial cell adhesion molecule-1 (PECAM-1). We studied murine models of selective single-dose (25 Gy) liver irradiation with and without TNF-α application (2 µg/mouse; i.p.). In serum of wild-type (wt)-mice, irradiation induced a mild increase in hepatic damage marker aspartate aminotransferase (AST) in comparison to sham-irradiated controls. AST levels further increased in mice treated with both irradiation and TNF-α. Accordingly, elevated numbers of leucocytes and increased expression of the macrophage marker CD68 were observed in the liver of these mice. In parallel to hepatic damage, a consecutive decrease in expression of hepatic PECAM-1 was found in mice that received radiation or TNF-α treatment alone. The combination of radiation and TNF-α induced an additional significant decline of PECAM-1. Furthermore, increased expression of hepatic lipocalin-2 (LCN-2), a hepatoprotective protein, was detected at mRNA and protein levels after irradiation or TNF-α treatment alone and the combination of both. Signal transducer and activator of transcription-3 (STAT-3) seems to be involved in the signalling cascade. To study the involvement of PECAM-1 in hepatic damage more deeply, the liver of both wt- and PECAM-1-knock-out-mice were selectively irradiated (25 Gy). Thereby, ko-mice showed higher liver damage as revealed by elevated AST levels, but also increased hepatoprotective LCN-2 expression. Our studies show that TNF-α has a pivotal role in radiation-induced hepatic damage. It acts in concert with irradiation and its activity is modulated by PECAM-1, which mediates pro- and anti-inflammatory signalling.


Subject(s)
Liver/metabolism , Liver/pathology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Radiation, Ionizing , Tumor Necrosis Factor-alpha/toxicity , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Aspartate Aminotransferases/blood , Kinetics , Leukocytes/metabolism , Lipocalin-2/metabolism , Liver/radiation effects , Male , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation/radiation effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT3 Transcription Factor/metabolism
20.
Anat Cell Biol ; 51(3): 150-157, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30310706

ABSTRACT

In and after the third trimester, the lung surface is likely to become smooth to facilitate respiratory movements. However, there are no detailed descriptions as to when and how the lung surface becomes regular. According to our observations of 33 fetuses at 9-16 weeks of gestation (crown-rump length [CRL], 39-125 mm), the lung surface, especially its lateral (costal) surface, was comparatively rough due to rapid branching and outward growing of bronchioli at the pseudoglandular phase of lung development. The pulmonary pleura was thin and, beneath the surface mesothelium, no or little mesenchymal tissue was detectable. Veins and lymphatic vessels reached the lung surface until 9 weeks and 16 weeks, respectively. In contrast, in 8 fetuses at 26-34 weeks of gestation (CRL, 210-290 mm), the lung surface was almost smooth because, instead of bronchioli, the developing alveoli faced the external surfaces of the lung. Moreover, the submesothelial tissue became thick due to large numbers of dilated veins connected to deep intersegmental veins. CD34-positive, multilayered fibrous tissue was also evident beneath the mesothelium in these stages. The submesothelial tissue was much thicker at the basal and mediastinal surfaces compared to apical and costal surfaces. Overall, rather than by a mechanical stress from the thoracic wall and diaphragm, a smooth lung surface seemed to be established largely by the thick submesothelial tissue including veins and lymphatic vessels until 26 weeks.

SELECTION OF CITATIONS
SEARCH DETAIL
...