Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ann N Y Acad Sci ; 1519(1): 153-166, 2023 01.
Article in English | MEDLINE | ID: mdl-36382536

ABSTRACT

Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.


Subject(s)
Antibodies, Bispecific , Humans , Antibodies, Bispecific/therapeutic use , Immunotherapy
2.
Blood Adv ; 6(12): 3678-3683, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35443020

ABSTRACT

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants severely limits available effective monoclonal antibody therapies. Effective drugs are also supply limited. COVID-19 convalescent plasma (CCP) qualified for high antibody levels effectively reduces immunocompetent outpatient hospitalization. The Food and Drug Administration currently allows outpatient CCP for the immunosuppressed. Viral-specific antibody levels in CCP can range 10- to 100-fold between donors, unlike the uniform viral-specific monoclonal antibody dosing. Limited data are available on the efficacy of polyclonal CCP to neutralize variants. We examined 108 pre-δ/pre-ο donor units obtained before March 2021, 20 post-δ COVID-19/postvaccination units, and 1 pre-δ/pre-ο hyperimmunoglobulin preparation for variant-specific virus (vaccine-related isolate [WA-1], δ, and ο) neutralization correlated to Euroimmun S1 immunoglobulin G antibody levels. We observed a two- to fourfold and 20- to 40-fold drop in virus neutralization from SARS-CoV-2 WA-1 to δ or ο, respectively. CCP antibody levels in the upper 10% of the 108 donations as well as 100% of the post-δ COVID-19/postvaccination units and the hyperimmunoglobulin effectively neutralized all 3 variants. High-titer CCP neutralizes SARS-CoV-2 variants despite no previous donor exposure to the variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , United States , COVID-19 Serotherapy
3.
medRxiv ; 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35262085

ABSTRACT

The ongoing evolution of SARS-Co-V2 variants to omicron severely limits available effective monoclonal antibody therapies. Effective drugs are also supply limited. Covid-19 convalescent plasma (CCP) qualified for high antibody levels effectively reduces immunocompetent outpatient hospitalization. The FDA currently allows outpatient CCP for the immunosuppressed. Viral specific antibody levels in CCP can range ten-to hundred-fold between donors unlike the uniform viral specific monoclonal antibody dosing. Limited data are available on the efficacy of polyclonal CCP to neutralize variants. We examined 108 pre-delta/pre-omicron donor units obtained before March 2021, 20 post-delta COVID-19/post-vaccination units and one pre-delta/pre-omicron hyperimmunoglobulin preparation for variant specific virus (vaccine-related isolate (WA-1), delta and omicron) neutralization correlated to Euroimmun S1 IgG antibody levels. We observed a 2-to 4-fold and 20-to 40-fold drop in virus neutralization from SARS-CoV-2 WA-1 to delta or omicron, respectively. CCP antibody levels in the upper 10% of the 108 donations as well as 100% of the post-delta COVID-19/post-vaccination units and the hyperimmunoglobulin effectively neutralized all three variants. High-titer CCP neutralizes SARS-CoV-2 variants despite no previous donor exposure to the variants. Key points: All of the post-delta COVID-19/post vaccination convalescent plasma effectively neutralizes the omicron and delta variants.High-titer CCP and hyperimmunoglobulin neutralizes SARS-CoV-2 variants despite no previous donor exposure to the variants.

4.
Cytotherapy ; 24(1): 19-26, 2022 01.
Article in English | MEDLINE | ID: mdl-34980364

ABSTRACT

BACKGROUND: The rise of investigative and commercially available cell therapy products adds a new dynamic to academic medical centers; that is, the management of patient-specific cell products. The scope of cell therapy has rapidly expanded beyond in-house collection and infusion of cell products such as bone marrow and peripheral blood transplant. The complexities and volumes of cell therapies are likely to continue to become more demanding. As patient-specific "living drugs," cell therapy products typically require material collection, product provenance, transportation and maintenance of critical quality attributes, including temperature and expiration dates. These requirements are complicated by variations in product-specific attributes, reporting requirements and interactions with industry not required of typical pharmaceuticals. METHODS: To manage these requirements, the authors set out to establish a framework within the Immune, Progenitor and Cell Therapeutics Lab, the Current Good Manufacturing Practice facility responsible for cell manufacturing at Mayo Clinic Rochester housed within the Division of Transfusion Medicine. The authors created a work unit (biopharmaceutical unit) dedicated to addressing the specialized procedures required to properly handle these living drugs from collection to delivery and housing the necessary processes to more easily integrate externally manufactured cell therapies into clinical practice. RESULTS: The result is a clear set of expectations defined for each step of the process, with logical documentation of critical steps that are concise and easy to follow. CONCLUSIONS: The authors believe this system is scalable for addressing the promised growth of cell therapy products well into the future. Here the authors describe this system and provide a framework that could be used by other centers to manage these important new therapies.


Subject(s)
Biological Products , Pharmaceutical Preparations , Cell- and Tissue-Based Therapy , Commerce , Humans
5.
Cytotherapy ; 23(5): 452-458, 2021 05.
Article in English | MEDLINE | ID: mdl-33715950

ABSTRACT

BACKGROUND AIMS: Viral vectors are commonly used to introduce chimeric antigen receptor (CAR) constructs into cell therapy products for the treatment of human disease. They are efficient at gene delivery and integrate into the host genome for subsequent replication but also carry risks if replication-competent lentivirus (RCL) remains in the final product. An optimal CAR T-cell product should contain sufficient integrated viral material and no RCL. Current product testing methods include cell-based assays with slow turnaround times and rapid quantitative polymerase chain reaction (PCR)-based assays that suffer from high result variability. The authors describe the development of a droplet digital PCR (ddPCR) method for detection of the vesicular stomatitis virus G glycoprotein envelope sequence, required for viral assembly, and the replication response element to measure integration of the CAR construct. METHODS: Assay validation included precision, linearity, sensitivity, specificity and reproducibility over a range of low to high concentrations. RESULTS: The limit of detection was 10 copies/µL, whereas negative samples showed <1.3 copies/µL. Within and between assay imprecision coefficients of variation across the reportable range (10-10 000 copies/µL) were <25%. Accuracy and linearity were verified by comparing known copy numbers with measured copy numbers (R2 >0.9985, slope ~0.9). Finally, serial measurements demonstrated very good long-term reproducibility (>95% of replicate results within the originally established ± two standard deviations). CONCLUSIONS: DDPCR has excellent reproducibility, linearity, specificity and sensitivity for detecting RCL and assuring the safety of patient products in a rapid manner. The technique can also likely be adapted for the rapid detection of other targets during cell product manufacturing, including purity, potency and sterility assays.


Subject(s)
Receptors, Chimeric Antigen , Humans , Lentivirus/genetics , Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Receptors, Chimeric Antigen/genetics , Reproducibility of Results , T-Lymphocytes
6.
Cancer Res ; 76(3): 749-61, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26676757

ABSTRACT

Many somatic mutations have been detected in pancreatic ductal adenocarcinoma (PDAC), leading to the identification of some key drivers of disease progression, but the involvement of large genomic rearrangements has often been overlooked. In this study, we performed mate pair sequencing (MPseq) on genomic DNA from 24 PDAC tumors, including 15 laser-captured microdissected PDAC and 9 patient-derived xenografts, to identify genome-wide rearrangements. Large genomic rearrangements with intragenic breakpoints altering key regulatory genes involved in PDAC progression were detected in all tumors. SMAD4, ZNF521, and FHIT were among the most frequently hit genes. Conversely, commonly reported genes with copy number gains, including MYC and GATA6, were frequently observed in the absence of direct intragenic breakpoints, suggesting a requirement for sustaining oncogenic function during PDAC progression. Integration of data from MPseq, exome sequencing, and transcriptome analysis of primary PDAC cases identified limited overlap in genes affected by both rearrangements and point mutations. However, significant overlap was observed in major PDAC-associated signaling pathways, with all PDAC exhibiting reduced SMAD4 expression, reduced SMAD-dependent TGFß signaling, and increased WNT and Hedgehog signaling. The frequent loss of SMAD4 and FHIT due to genomic rearrangements strongly implicates these genes as key drivers of PDAC, thus highlighting the strengths of an integrated genomic and transcriptomic approach for identifying mechanisms underlying disease initiation and progression.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic , Gene Rearrangement , Genomics/methods , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Pancreatic Neoplasms/pathology , Signal Transduction
7.
Proc Natl Acad Sci U S A ; 109(36): 14381-6, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22908299

ABSTRACT

Tyr142, the C-terminal amino acid of histone variant H2A.X is phosphorylated by WSTF (Williams-Beuren syndrome transcription factor), a component of the WICH complex (WSTF-ISWI chromatin-remodeling complex), under basal conditions in the cell. In response to DNA double-strand breaks (DSBs), H2A.X is instantaneously phosphorylated at Ser139 by the kinases ATM and ATR and is progressively dephosphorylated at Tyr142 by the Eya1 and Eya3 tyrosine phosphatases, resulting in a temporal switch from a postulated diphosphorylated (pSer139, pTyr142) to monophosphorylated (pSer139) H2A.X state. How mediator proteins interpret these two signals remains a question of fundamental interest. We provide structural, biochemical, and cellular evidence that Microcephalin (MCPH1), an early DNA damage response protein, can read both modifications via its tandem BRCA1 C-terminal (BRCT) domains, thereby emerging as a versatile sensor of H2A.X phosphorylation marks. We show that MCPH1 recruitment to sites of DNA damage is linked to both states of H2A.X.


Subject(s)
DNA Repair/physiology , Histones/metabolism , Models, Molecular , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Phosphoserine/metabolism , Phosphotyrosine/metabolism , Calorimetry , Cell Cycle Proteins , Cloning, Molecular , Crystallography, X-Ray , Cytoskeletal Proteins , DNA Damage/physiology , Escherichia coli , Genetic Vectors/genetics , Humans , Microscopy, Fluorescence , Nerve Tissue Proteins/genetics
8.
J Biol Chem ; 287(4): 2854-62, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22139841

ABSTRACT

Microcephalin (MCPH1), the first gene identified as causative for primary recessive autosomal microcephaly, is aberrantly expressed in autism-like disorders and human malignancy of breast and ovarian origin. MCPH1, the encoded protein product, has been implicated in various cellular processes including the DNA damage checkpoint, DNA repair, and transcription. Although our understanding of the cellular context in which MCPH1 operates continues to develop, a structural understanding of the C-terminal tandem BRCT domains of MCPH1 remains unexplored. Here, we identify cell division cycle protein 27 (Cdc27), a component of the anaphase-promoting complex (APC/C), as a novel interacting partner of MCPH1. We provide in vitro and in vivo evidence that the C-terminal tandem BRCT domains of MCPH1 (C-BRCTs) bind Cdc27 in a phosphorylation-dependent manner. To characterize this interaction further, we determined the structure of MCPH1 C-BRCTs in complex with a phosphorylated Cdc27 peptide (pCdc27) using x-ray crystallography. Based on this structure, we identified single amino acid mutations targeted at the binding interface that disrupted the MCPH1-pCdc27 interaction. Collectively, our data define the biochemical, structural, and cellular determinants of the novel interaction between MCPH1 and Cdc27 and suggest that this interaction may occur within the larger context of MCPH1-APC/C.


Subject(s)
Cell Cycle Proteins/metabolism , Nerve Tissue Proteins/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Amino Acid Substitution , Anaphase-Promoting Complex-Cyclosome , Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome , Cell Cycle Proteins/genetics , Cell Line , Cytoskeletal Proteins , Humans , Mutation, Missense , Nerve Tissue Proteins/genetics , Protein Binding/physiology , Protein Structure, Tertiary , Ubiquitin-Protein Ligase Complexes/genetics
9.
J Biol Chem ; 285(19): 14565-71, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20233726

ABSTRACT

DNA damage repair and checkpoint responses prevent genome instability and provide a barrier to the development of cancer. Inherited mutations in DNA damage response (DDR) genes such as those that encode the homologous recombination (HR) proteins BRCA1 and BRCA2 cause cancer predisposition syndromes. PARP inhibitors are an exciting new class of targeted therapy for treating patients with HR repair-defective tumors. In this study, we use an RNAi screen to identify genes that when silenced cause synthetic lethality with the PARP inhibitor AZD2281. This screen identified the deubiquitylating enzyme USP11 as a participant in HR repair of DNA double-strand breaks. Silencing USP11 with siRNA leads to spontaneous DDR activation in otherwise undamaged cells and hypersensitivity to PARP inhibition, ionizing radiation, and other genotoxic stress agents. Moreover, we demonstrate that HR repair is defective in USP11-silenced cells. Finally, the recruitment of a subset of double-strand break repair proteins including RAD51 and 53BP1 to repair foci is misregulated in the absence of USP11 catalytic activity. Thus, our synthetic lethal approach identified USP11 as a component of the HR double-strand break repair pathway.


Subject(s)
DNA Breaks, Double-Stranded , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/genetics , RNA, Small Interfering/pharmacology , Thiolester Hydrolases/metabolism , Blotting, Western , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Survival/drug effects , Cell Survival/radiation effects , DNA Repair , Fluorescent Antibody Technique , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/pathology , Poly(ADP-ribose) Polymerases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Radiation, Ionizing , Recombination, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Thiolester Hydrolases/genetics , Tumor Cells, Cultured , Tumor Stem Cell Assay , Tumor Suppressor p53-Binding Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...