Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Adv ; 6(39)2020 Sep.
Article in English | MEDLINE | ID: mdl-32978156

ABSTRACT

Human exploration of the Moon is associated with substantial risks to astronauts from space radiation. On the surface of the Moon, this consists of the chronic exposure to galactic cosmic rays and sporadic solar particle events. The interaction of this radiation field with the lunar soil leads to a third component that consists of neutral particles, i.e., neutrons and gamma radiation. The Lunar Lander Neutrons and Dosimetry experiment aboard China's Chang'E 4 lander has made the first ever measurements of the radiation exposure to both charged and neutral particles on the lunar surface. We measured an average total absorbed dose rate in silicon of 13.2 ± 1 µGy/hour and a neutral particle dose rate of 3.1 ± 0.5 µGy/hour.

2.
Life Sci Space Res (Amst) ; 14: 18-28, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28887939

ABSTRACT

The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations. In this work the outcome of a workshop held in June 2016 in Boulder, CO, USA is presented: experimental results from the Radiation Assessment Detector of the Mars Science Laboratory are compared to model results from GEANT4, HETC-HEDS, HZETRN, MCNP6, and PHITS. Charged and neutral particle spectra and dose rates measured between 15 November 2015 and 15 January 2016 and model results calculated for this time period are investigated.


Subject(s)
Cosmic Radiation , Extraterrestrial Environment , Mars , Models, Theoretical , Radiation Exposure/analysis , Radiation Monitoring/methods , Astronauts , Gamma Rays , Humans , Neutrons , Radiation Protection
3.
Life Sci Space Res (Amst) ; 14: 3-11, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28887941

ABSTRACT

The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory (MSL) Curiosity rover has been measuring the radiation environment in Gale crater on Mars since August, 2012. These first in-situ measurements provide an important data set for assessing the radiation-associated health risks for future manned missions to Mars. Mainly, the radiation field on the Martian surface stems from Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. RAD is capable of measuring differential particle fluxes for lower-energy ions and isotopes of hydrogen and helium (up to hundreds of MeV/nuc). Additionally, RAD also measures integral particle fluxes for higher energies of these ions. Besides providing insight on the current Martian radiation environment, these fluxes also present an essential input for particle transport codes that are used to model the radiation to be encountered during future manned missions to Mars. Comparing simulation results with actual ground-truth measurements helps to validate these transport codes and identify potential areas of improvements in the underlying physics of these codes. At the First Mars Radiation Modeling Workshop (June 2016 in Boulder, CO), different groups of modelers were asked to calculate the Martian surface radiation environment for the time of November 15, 2015 to January 15, 2016. These model results can then be compared with in-situ measurements of MSL/RAD conducted during the same time frame. In this publication, we focus on presenting the charged particle fluxes measured by RAD between November 15, 2015 and January 15, 2016, providing the necessary data set for the comparison to model outputs from the modeling workshop. We also compare the fluxes to initial GCR intensities, as well as to RAD measurements from an earlier time period (August 2012 to January 2013). Furthermore, we describe how changes and updates in RAD on board processing and the on ground analysis tools effect and improve the flux calculations. An in-depth comparison of modeling results from the workshop and RAD fluxes of this publication is presented elsewhere in this issue (Matthiä et al., 2017).


Subject(s)
Cosmic Radiation , Environmental Exposure/analysis , Extraterrestrial Environment , Mars , Models, Theoretical , Radiation Monitoring/methods , Humans , Time Factors
4.
Life Sci Space Res (Amst) ; 10: 29-37, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27662785

ABSTRACT

The Mars Science Laboratory (MSL) started its 253-day cruise to Mars on November 26, 2011. During cruise the Radiation Assessment Detector (RAD), situated on board the Curiosity rover, conducted measurements of the energetic-particle radiation environment inside the spacecraft. This environment consists mainly of galactic cosmic rays (GCRs), as well as secondary particles created by interactions of these GCRs with the spacecraft. The RAD measurements can serve as a proxy for the radiation environment a human crew would encounter during a transit to Mars, for a given part of the solar cycle, assuming that a crewed vehicle would have comparable shielding. The measurements of radiological quantities made by RAD are important in themselves, and, the same data set allow for detailed analysis of GCR-induced particle spectra inside the spacecraft. This provides important inputs for the evaluation of current transport models used to model the free-space (and spacecraft) radiation environment for different spacecraft shielding and different times in the solar cycle. Changes in these conditions can lead to significantly different radiation fields and, thus, potential health risks, emphasizing the need for validated transport codes. Here, we present the first measurements of charged particle fluxes inside a spacecraft during the transit from Earth to Mars. Using data obtained during the last two month of the cruise to Mars (June 11-July 14, 2012), we have derived detailed energy spectra for low-Z particles stopping in the instrument's detectors, as well as integral fluxes for penetrating particles with higher energies. Furthermore, we analyze the temporal changes in measured proton fluxes during quiet solar periods (i.e., when no solar energetic particle events occurred) over the duration of the transit (December 9, 2011-July 14, 2012) and correlate them with changing heliospheric conditions.


Subject(s)
Cosmic Radiation , Environmental Exposure/analysis , Mars , Occupational Exposure/analysis , Radiation Monitoring , Spacecraft , Astronauts , Humans , Risk Assessment
5.
Radiat Prot Dosimetry ; 166(1-4): 290-4, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25969529

ABSTRACT

In this study, results are presented from the on-board radiation assessment detector (RAD) of Mars Science Laboratory (MSL). RAD is designed to measure the energetic particle radiation environment, which consists of galactic cosmic rays (GCRs) and solar energetic particles (SEPs) as well as secondary particles created by nuclear interactions of primary particles in the shielding (during cruise) or Martian soil and atmosphere (surface measurements). During the cruise, RAD collected data on space radiation from inside the craft, thus allowing for a reasonable estimation of what a human crew travelling to/from Mars might be exposed to. On the surface of Mars, RAD is shielded by the atmosphere (from above) and the planet itself (from below). RAD measures the first detailed radiation data from the surface of another planet, and they are highly relevant for planning future crewed missions. The results for radiation dose and dose equivalent (a quantity most directly related to human health risk) are presented during the cruise phase, as well as on the Martian surface. Dose and dose equivalent are dominated by the continuous GCR radiation, but several SEP events were also detected and are discussed here.


Subject(s)
Cosmic Radiation , Extraterrestrial Environment , Mars , Models, Theoretical , Occupational Exposure/prevention & control , Solar Activity , Space Flight , Astronauts , Environmental Exposure/adverse effects , Humans , Radiation Protection , Risk Assessment
6.
Science ; 343(6169): 1244797, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24324275

ABSTRACT

The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.


Subject(s)
Cosmic Radiation , Exobiology , Extraterrestrial Environment , Mars , Deinococcus/physiology , Deinococcus/radiation effects , Humans , Organic Chemicals/analysis , Radiation Dosage , Space Flight , Surface Properties/radiation effects
7.
Rev Sci Instrum ; 84(1): 013303, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23387638

ABSTRACT

Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then--induced by charged particles--mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigate their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.

8.
Rev Sci Instrum ; 82(9): 093302, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21974580

ABSTRACT

In this paper we present our measurements of charge-state and current-density distributions performed in very close vicinity (15 mm) of the extraction of our hexapole geometry electron cyclotron resonance ion source. We achieved a relatively high spatial resolution reducing the aperture of our 3D-movable extraction (puller) electrode to a diameter of only 0.5 mm. Thus, we are able to limit the source of the extracted ion beam to a very small region of the plasma electrode's hole (Ø = 4 mm) and therefore to a very small region of the neutral plasma sheath. The information about the charge-state distribution and the current density in the plane of the plasma electrode at each particular position is conserved in the ion beam. We determined the total current density distribution at a fixed coaxial distance of only 15 mm to the plasma electrode by remotely moving the small-aperture puller electrode which contained a dedicated Faraday cup (FC) across the aperture of the plasma electrode. In a second measurement we removed the FC and recorded m/q-spectra for the different positions using a sector magnet. From our results we can deduce that different ion charge-states can be grouped into bloated triangles of different sizes and same orientation at the extraction with the current density peaking at centre. This confirms observations from other groups based on simulations and emittance measurements. We present our measurements in detail and discuss possible systematic errors.

9.
Rev Sci Instrum ; 82(3): 033302, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21456727

ABSTRACT

Simulations predict that the concentric rings and the triangular structures in the profiles of strongly focused ion beams that are found in different experiments should be dominated by ion species with the same or at least similar m/q-ratio. To verify these theoretical predictions we have tuned our ECR ion source to deliver a beam consisting of multiple ion species whose particular m/q-depending focusing ranges from weakly focused to overfocused. We then recorded spatially resolved charge-state distributions of the beam profile at characteristic positions in the plane perpendicular to the beam line. The results validate theoretical predictions and are summarized in this paper. To achieve the required beam profile characteristics we moved the extraction along the beam line to achieve stronger focusing than by only changing the extraction voltage. To fit the regions of interest of the beam profile into the transmission area of the sector magnet, we steered the beam by moving the extraction in the plane perpendicular to the beam axis. The results of both investigations, beam focusing and beam steering by using a 3D-movable extraction, are also reported in this paper. A brief overview of the new beam monitor extensively used during these measurements, the Faraday cup array, is also given.

10.
Rev Sci Instrum ; 80(11): 113302, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19947723

ABSTRACT

Ion sources have wide-spread use in a multitude of applications. For many, an accurate knowledge, or better, an accurate imaging, of the beam profile and intensity is an important criterion. We are developing an ion source to calibrate instruments for space-based measurements of solar wind and suprathermal particles in the energy range from below 1 keV/nuc to above 200 keV/nuc. In order to establish accurate beam profiles for calibration purposes, we have developed a new method based on an array of very small (diameter = 0.3 mm) Faraday cups. Here, we describe the experimental setup and discuss how to achieve several requirements such as a large thermal load due to the approximately 40 W of beam power.

SELECTION OF CITATIONS
SEARCH DETAIL
...