Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cochrane Database Syst Rev ; 3: CD014959, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38483067

ABSTRACT

BACKGROUND: Leptospirosis is a global zoonotic and waterborne disease caused by pathogenic Leptospira species. Antibiotics are used as a strategy for prevention of leptospirosis, in particular in travellers and high-risk groups. However, the clinical benefits are unknown, especially when considering possible treatment-associated adverse effects. This review assesses the use of antibiotic prophylaxis in leptospirosis and is an update of a previously published review in the Cochrane Library (2009, Issue 3). OBJECTIVES: To evaluate the benefits and harms of antibiotic prophylaxis for human leptospirosis. SEARCH METHODS: We identified randomised clinical trials through electronic searches of the Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE, Embase, LILACS, Science Citation Index Expanded, and other resources. We searched online clinical trial registries to identify unpublished or ongoing trials. We checked reference lists of the retrieved studies for further trials. The last date of search was 17 April 2023. SELECTION CRITERIA: We included ⁠⁠randomised clinical trials of any trial design, assessing antibiotics for prevention of leptospirosis, and with no restrictions on age, sex, occupation, or comorbidity of trial participants. We looked for trials assessing antibiotics irrespective of route of administration, dosage, and schedule versus placebo or no intervention. We also included trials assessing antibiotics versus other antibiotics using these criteria, or the same antibiotic but with another dose or schedule. DATA COLLECTION AND ANALYSIS: We followed Cochrane methodology. The primary outcomes were all-cause mortality, laboratory-confirmed leptospirosis regardless of the presence of an identified clinical syndrome (inclusive of asymptomatic cases), clinical diagnosis of leptospirosis regardless of the presence of laboratory confirmation, clinical diagnosis of leptospirosis confirmed by laboratory diagnosis (exclusive of asymptomatic cases), and serious adverse events. The secondary outcomes were quality of life and the proportion of people with non-serious adverse events. We assessed the risk of bias of the included trials using the RoB 2 tool and the certainty of evidence using GRADE. We presented dichotomous outcomes as risk ratios (RR) and continuous outcomes as mean difference (MD), with their 95% confidence intervals (CI). We used a random-effects model for our main analyses and the fixed-effect model for sensitivity analyses. Our primary outcome analyses included trial data at the longest follow-up. MAIN RESULTS: We identified five randomised clinical trials comprising 2593 participants that compared antibiotics (doxycycline, azithromycin, or penicillin) with placebo, or one antibiotic compared with another. Four trials assessed doxycycline with different durations, one trial assessed azithromycin, and one trial assessed penicillin. One trial had three intervention groups: doxycycline, azithromycin, and placebo. Three trials assessed pre-exposure prophylaxis, one trial assessed postexposure prophylaxis, and one did not report this clearly. Four trials recruited residents in endemic areas, and one trial recruited soldiers who experienced limited time exposure. The participants' ages in the included trials were 10 to 80 years. Follow-up ranged from one to three months. Antibiotics versus placebo Doxycycline compared with placebo may result in little to no difference in all-cause mortality (RR 0.15, 95% CI 0.01 to 2.83; 1 trial, 782 participants; low-certainty evidence). Prophylactic antibiotics may have little to no effect on laboratory-confirmed leptospirosis, but the evidence is very uncertain (RR 0.56, 95% CI 0.25 to 1.26; 5 trials, 2593 participants; very low-certainty evidence). Antibiotics may result in little to no difference in the clinical diagnosis of leptospirosis regardless of laboratory confirmation (RR 0.76, 95% CI 0.53 to 1.08; 4 trials, 1653 participants; low-certainty evidence) and the clinical diagnosis of leptospirosis with laboratory confirmation (RR 0.57, 95% CI 0.26 to 1.26; 4 trials, 1653 participants; low-certainty evidence). Antibiotics compared with placebo may increase non-serious adverse events, but the evidence is very uncertain (RR 10.13, 95% CI 2.40 to 42.71; 3 trials, 1909 participants; very low-certainty evidence). One antibiotic versus another antibiotic One trial assessed doxycycline versus azithromycin but did not report mortality. Compared to azithromycin, doxycycline may have little to no effect on laboratory-confirmed leptospirosis regardless of the presence of an identified clinical syndrome (RR 1.49, 95% CI 0.51 to 4.32; 1 trial, 137 participants), on the clinical diagnosis of leptospirosis regardless of the presence of laboratory confirmation (RR 4.18, 95% CI 0.94 to 18.66; 1 trial, 137 participants), on the clinical diagnosis of leptospirosis confirmed by laboratory diagnosis (RR 4.18, 95% CI 0.94 to 18.66; 1 trial, 137 participants), and on non-serious adverse events (RR 1.12, 95% CI 0.36 to 3.48; 1 trial, 137 participants), but the evidence is very uncertain. The certainty of evidence for all the outcomes was very low. None of the five included trials reported serious adverse events or assessed quality of life. One study is awaiting classification. Funding Four of the five trials included statements disclosing their funding/supporting sources, and the remaining trial did not include this. Three of the four trials that disclosed their supporting sources received the supply of trial drugs directly from the same pharmaceutical company, and the remaining trial received financial support from a governmental source. AUTHORS' CONCLUSIONS: We do not know if antibiotics versus placebo or another antibiotic has little or have no effect on all-cause mortality or leptospirosis infection because the certainty of evidence is low or very low. We do not know if antibiotics versus placebo may increase the overall risk of non-serious adverse events because of very low-certainty evidence. We lack definitive rigorous data from randomised trials to support the use of antibiotics for the prophylaxis of leptospirosis infection. We lack trials reporting data on clinically relevant outcomes.


Subject(s)
Antibiotic Prophylaxis , Leptospirosis , Humans , Antibiotic Prophylaxis/adverse effects , Doxycycline/adverse effects , Azithromycin/adverse effects , Quality of Life , Anti-Bacterial Agents/adverse effects , Penicillins , Leptospirosis/prevention & control
2.
Cochrane Database Syst Rev ; 3: CD014960, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38483092

ABSTRACT

BACKGROUND: Leptospirosis is a disease transmitted from animals to humans through water, soil, or food contaminated with the urine of infected animals, caused by pathogenic Leptospira species. Antibiotics are commonly prescribed for the management of leptospirosis. Despite the widespread use of antibiotic treatment for leptospirosis, there seems to be insufficient evidence to determine its effectiveness or to recommend antibiotic use as a standard practice. This updated systematic review evaluated the available evidence regarding the use of antibiotics in treating leptospirosis, building upon a previously published Cochrane review. OBJECTIVES: To evaluate the benefits and harms of antibiotics versus placebo, no intervention, or another antibiotic for the treatment of people with leptospirosis. SEARCH METHODS: We identified randomised clinical trials following standard Cochrane procedures. The date of the last search was 27 March 2023. SELECTION CRITERIA: We searched for randomised clinical trials of various designs that examined the use of antibiotics for treating leptospirosis. We did not impose any restrictions based on the age, sex, occupation, or comorbidities of the participants involved in the trials. Our search encompassed trials that evaluated antibiotics, regardless of the method of administration, dosage, and schedule, and compared them with placebo or no intervention, or compared different antibiotics. We included trials regardless of the outcomes reported. DATA COLLECTION AND ANALYSIS: During the preparation of this review, we adhered to the Cochrane methodology and used Review Manager. The primary outcomes were all-cause mortality and serious adverse events (nosocomial infection). Our secondary outcomes were quality of life, proportion of people with adverse events considered non-serious, and days of hospitalisation. To assess the risk of bias of the included trials, we used the RoB 2 tool, and for evaluating the certainty of evidence we used GRADEpro GDT software. We presented dichotomous outcomes as risk ratios (RR) and continuous outcomes as mean differences (MD), both accompanied by their corresponding 95% confidence intervals (CI). We used the random-effects model for all our main analyses and the fixed-effect model for sensitivity analyses. For our primary outcome analyses, we included trial data from the longest follow-up period. MAIN RESULTS: We identified nine randomised clinical trials comprising 1019 participants. Seven trials compared two intervention groups and two trials compared three intervention groups. Amongst the trials comparing antibiotics versus placebos, four trials assessed penicillin and one trial assessed doxycycline. In the trials comparing different antibiotics, one trial evaluated doxycycline versus azithromycin, one trial assessed penicillin versus doxycycline versus cefotaxime, and one trial evaluated ceftriaxone versus penicillin. One trial assessed penicillin with chloramphenicol and no intervention. Apart from two trials that recruited military personnel stationed in endemic areas or military personnel returning from training courses in endemic areas, the remaining trials recruited people from the general population presenting to the hospital with fever in an endemic area. The participants' ages in the included trials was 13 to 92 years. The treatment duration was seven days for penicillin, doxycycline, and cephalosporins; five days for chloramphenicol; and three days for azithromycin. The follow-up durations varied across trials, with three trials not specifying their follow-up periods. Three trials were excluded from quantitative synthesis; one reported zero events for a prespecified outcome, and two did not provide data for any prespecified outcomes. Antibiotics versus placebo or no intervention The evidence is very uncertain about the effect of penicillin versus placebo on all-cause mortality (RR 1.57, 95% CI 0.65 to 3.79; I2 = 8%; 3 trials, 367 participants; very low-certainty evidence). The evidence is very uncertain about the effect of penicillin or chloramphenicol versus placebo on adverse events considered non-serious (RR 1.05, 95% CI 0.35 to 3.17; I2 = 0%; 2 trials, 162 participants; very low-certainty evidence). None of the included trials assessed serious adverse events. Antibiotics versus another antibiotic The evidence is very uncertain about the effect of penicillin versus cephalosporin on all-cause mortality (RR 1.38, 95% CI 0.47 to 4.04; I2 = 0%; 2 trials, 348 participants; very low-certainty evidence), or versus doxycycline (RR 0.93, 95% CI 0.13 to 6.46; 1 trial, 168 participants; very low-certainty evidence). The evidence is very uncertain about the effect of cefotaxime versus doxycycline on all-cause mortality (RR 0.18, 95% CI 0.01 to 3.78; 1 trial, 169 participants; very low-certainty evidence). The evidence is very uncertain about the effect of penicillin versus doxycycline on serious adverse events (nosocomial infection) (RR 0.62, 95% CI 0.11 to 3.62; 1 trial, 168 participants; very low-certainty evidence) or versus cefotaxime (RR 1.01, 95% CI 0.15 to 7.02; 1 trial, 175 participants; very low-certainty evidence). The evidence is very uncertain about the effect of doxycycline versus cefotaxime on serious adverse events (nosocomial infection) (RR 1.01, 95% CI 0.15 to 7.02; 1 trial, 175 participants; very low-certainty evidence). The evidence is very uncertain about the effect of penicillin versus cefotaxime (RR 3.03, 95% CI 0.13 to 73.47; 1 trial, 175 participants; very low-certainty evidence), versus doxycycline (RR 2.80, 95% CI 0.12 to 67.66; 1 trial, 175 participants; very low-certainty evidence), or versus chloramphenicol on adverse events considered non-serious (RR 0.74, 95% CI 0.15 to 3.67; 1 trial, 52 participants; very low-certainty evidence). Funding Six of the nine trials included statements disclosing their funding/supporting sources and three trials did not mention funding source. Four of the six trials mentioning sources received funds from public or governmental sources or from international charitable sources, and the remaining two, in addition to public or governmental sources, received support in the form of trial drug supply directly from pharmaceutical companies. AUTHORS' CONCLUSIONS: As the certainty of evidence is very low, we do not know if antibiotics provide little to no effect on all-cause mortality, serious adverse events, or adverse events considered non-serious. There is a lack of definitive rigorous data from randomised trials to support the use of antibiotics for treating leptospirosis infection, and the absence of trials reporting data on clinically relevant outcomes further adds to this limitation.


Subject(s)
Cross Infection , Leptospirosis , Humans , Anti-Bacterial Agents/adverse effects , Doxycycline/adverse effects , Azithromycin , Quality of Life , Chloramphenicol , Penicillins , Cephalosporins/adverse effects , Cefotaxime , Leptospirosis/drug therapy
3.
Article in English | MEDLINE | ID: mdl-37681800

ABSTRACT

Engaging in unhealthy lifestyles may be considered a risk factor for mental health problems, but there is limited evidence. This study aimed to identify the relationship between unhealthy lifestyles and mental health problems among Myanmar school-going adolescents. Global School Based Student Health Survey (GSHS) data from 2838 school-going adolescents from Myanmar were analysed. Bivariable and multivariable logistic regression analyses were applied. After adjusting for confounding variables, adolescents who were seated for more than three hours per day had higher odds of loneliness, anxiety-induced sleep disturbance, suicide ideation, and suicide attempts compared to others. Moreover, students who ate fruit less than one time per day were more likely to experience anxiety-induced sleep disturbance and suicidal ideation. Being a current drinker was significantly associated with suicidal ideation and attempt. Obese students were more likely to feel lonely compared to normal weight students. Our study indicates there is a strong association between unhealthy lifestyle behaviours and mental health problems among school adolescents in Myanmar.


Subject(s)
Nutritional Status , Sleep Wake Disorders , Adolescent , Humans , Mental Health , Myanmar/epidemiology , Life Style , Risk-Taking
SELECTION OF CITATIONS
SEARCH DETAIL
...