Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 70(1): 100-4, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19101705

ABSTRACT

Azetidine-2-carboxylic acid (Aze) 1 is a non-protein amino acid present in sugar beets and in table beets (Beta vulgaris). It is readily misincorporated into proteins in place of proline 2 in many species, including humans, and causes numerous toxic effects as well as congenital malformations. Its role in the pathogenesis of disease in humans has remained unexplored. Sugar beet agriculture, especially in the Northern Hemisphere, has become widespread during the past 150 years, and now accounts for nearly 30% of the world's supply of sucrose. Sugar beet byproducts are also used as a dietary supplement for livestock. Therefore, this study was undertaken as an initial survey to identify Aze-containing links in the food chain. Herein, we report the presence of Aze 1 in three sugar beet byproducts that are fed to farm animals: sugar beet molasses, shredded sugar beet pulp, and pelleted sugar beet pulp.


Subject(s)
Azetidinecarboxylic Acid/chemistry , Beta vulgaris/chemistry , Animal Feed , Food , Plant Tubers/chemistry
2.
J Nucl Med ; 46(5): 878-86, 2005 May.
Article in English | MEDLINE | ID: mdl-15872363

ABSTRACT

UNLABELLED: Numerous new molecular targets for diseases are rapidly being identified and validated in the postgenomic era, urging scientists to explore novel techniques for accelerating molecular probe development. In this study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was investigated as a potential tool for high-throughput screening and characterization of molecular imaging probes. Specifically, MALDI-TOF-MS was used to screen a small library of phosphonium cations for their ability to accumulate in cells. METHODS: C6 cells incubated with phosphonium cations at room temperature were collected and lysed for experiments. Calibration curves for the internal standard, methyltriphenyl phosphonium, and for tetraphenylphosphonium bromide (TPP) and other phosphonium cations were first established. The time course of TPP uptake by C6 cells was then quantified using both MALDI-TOF-MS and liquid scintillation counting with (3)H-TPP. In addition, MALDI-TOF-MS was used to screen a library of 8 phosphonium cations and subsequently rank their ability to penetrate membranes and accumulate in cells. Finally, the accumulation of 4-fluorophenyltriphenyl phosphonium (FTPP) in the membrane potential-modulated cells was also measured by MALDI-TOF-MS. RESULTS: MALDI-TOF-MS spectra clearly revealed that TPP was easily identified from cell lysates even as early as 10 min after incubation and that levels as low as 0.11 fmol of TPP per cell could be detected, suggesting the high sensitivity of this technique. The time course of TPP influx determined by both MALDI-TOF-MS and radioactivity counting showed no statistically significant difference (P > 0.05 for all time points). These data validated MALDI-TOF-MS as an alternative approach for accurately measuring uptake of phosphonium cations by cells. TPP and FTPP demonstrated greater accumulation in cells than did the other cations evaluated in this study. Furthermore, uptake profiles suggested that FTPP preserves the membrane potential-dependent uptake property of TPP in cell cultures. Taken together, these data justify further synthesis and evaluation of (18)F-FTPP as a molecular probe for imaging mitochondrial dysfunction. CONCLUSION: These results demonstrate that MALDI-TOF-MS is a powerful analytic tool for rapid screening and characterization of phosphonium cations as molecular probes. This technique can potentially be applied to the evaluation of other imaging probes or drugs and thus may facilitate their rational design and development.


Subject(s)
Glioma/metabolism , Molecular Biology/methods , Molecular Probe Techniques , Onium Compounds/pharmacokinetics , Organophosphorus Compounds/pharmacokinetics , Spectrometry, Mass, Electrospray Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Trityl Compounds/pharmacokinetics , Animals , Cell Line, Tumor , Isotope Labeling , Metabolic Clearance Rate , Rats
3.
J Virol ; 79(8): 4952-64, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15795281

ABSTRACT

Infection of cultured cells with Kaposi's sarcoma associated herpesvirus (KSHV) typically establishes a latent infection, in which only a few viral genes are expressed. Recently, it has been reported that a subset of lytic genes are transiently expressed very early after viral entry but that this burst of abortive lytic gene expression is terminated with the supervention of latency (H. H. Krishnan, P. P. Naranatt, M. S. Smith, L. Zeng, C. Bloomer, and B. Chandran, J. Virol. 78:3601-3620, 2004). To identify molecules imported into cells by KSHV that might influence this gene expression program, we have examined the protein composition of the KSHV particle. Immunoblotting of virus particles demonstrated that RTA, the lytic switch protein, and RAP, a viral protein that is a transcriptional and cell cycle modulator, were both incorporated into virus particles. In a second approach, polypeptides isolated from purified virions were identified by mass-spectrometric analysis of their constituent tryptic peptides. With this approach we were able to identify 18 major virion proteins, including structural, regulatory, and signaling proteins of both viral and cellular origin.


Subject(s)
Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/physiology , Viral Proteins/genetics , Virion/genetics , Amino Acid Sequence , Cell Line , Gene Expression Regulation, Viral , Humans , Molecular Sequence Data , Peptide Fragments/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Trypsin , Virus Latency/genetics , Virus Latency/physiology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...