Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 661: 124459, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996822

ABSTRACT

Resveratrol (RSV) has powerful antioxidant activities. However, the bioavailability is still limited due to low solubility and transport issues. Nanocrystal technology has been introduced to address these issues; however, the bulky formulation of the nanocrystal process through nanosuspension faces a big challenge in terms of stability and scale-up ability. This work aimed to enhance the bioavailability of RSV through nanocrystal formulation incorporated into soluble mesoporous carriers for superior solid-state stability and feasibility. This formulation was designed and developed rationally through scientific justification in the nanocrystal formulation along with quality by design paradigm. Box-Behnken design was applied to determine the optimized formulation based on the particle size and distribution, drug loading, zeta potential, and supersaturation parameters. The nanocrystal was formed through evaporation of drug, polymer, and surfactant in the solvent incorporated into mesoporous material. The nanocrystal was evaluated by vibrational spectroscopy, thermal analyses, and SEM and TEM photographs, followed by crystallinity evaluation. The results indicated that the factors only affected the particle size variation, zeta potential, drug loading, and the time to reach the supersaturation peak level. The optimized formulation was achieved by 68 % desirability value, producing 133.3 ± 1.2 nm particle size and -24.6 mV zeta potential. The physical and chemical evaluation characterization indicated no interaction between RSV and carrier. In addition, there was no difference in crystallinity between the RSV nanocrystal and native RSV. Moreover, the RSV nanocrystal improved the bioavailability nearly twice compared to the RSV suspension.

2.
J AOAC Int ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941500

ABSTRACT

BACKGROUND: 1,4-Dioxane (1,4-D) is a by-product of the synthesis of surfactants, typically found in some cosmetics products such as shampoo, toothpaste, and soap. The presence of 1,4-D in cosmetics products is limited to certain amount since 1,4-D is classified as a probable human carcinogen. OBJECTIVE: This present study was intended to validate static headspace gas chromatography-mass spectrometry (HS GC-MS) for the determination of 1,4-D in cosmetics products. METHODS: The condition of headspace and GC-MS was optimized to get the best condition for analysis of 1,4-D using 1,4-Dioxane-d8 (1,4-D-d8) as internal standard (IS). The developed method was validated by evaluating the key performance characteristics, including specificity, linearity, limit of detection (LoD), limit of quantification (LoQ), accuracy, and precision. RESULTS: The results showed that HS GC-MS was specific since the peaks of the selected ion monitoring (SIM) mode could be separated and confirmed at m/z 88 and m/z 96 for 1,4-D and 1,4-D-d8, respectively. The method was linear over the concentration range of 0.1287-1.2875 µg/mL, with R2 > 0.999 and RSD residuals < 2.0. A collaborative study were conducted on this method, with ten participating laboratories from four countries. The outcome of this study was found to be accurate and precise, as evidenced by the excellent recoveries ranged from 94.6-102.1% and with good reproducibility with RSD values ranged from 0.2-1.1%. The collaborative studies exhibited that all data reported by ten participating laboratories in four countries were inliers without any extreme values observed either in mean or RSD values. CONCLUSION: This HS GC-MS is found to be fit and suitable for the determination of trace level of 1,4-D in cosmetics products. HIGHLIGHTS: HS GC-MS method could be proposed as a standard method for quantitative analysis of 1,4-D in cosmetics products since the collaborative studies indicated that the developed method meet the requirement in "Guidelines for Collaborative Study Procedures to Validate Characteristics of a Method of Analysis".

3.
J Adv Pharm Technol Res ; 15(2): 99-103, 2024.
Article in English | MEDLINE | ID: mdl-38903555

ABSTRACT

Fish oils are good sources for essential fatty acids such as omega-3 and omega-6 fatty acids needed to human growth. Indonesia is rich in fish species and among this, red snapper fish (Lutjanus sp.) can be extracted to get red snapper fish oils (RSFOs). The aim of this study was to classify and discriminate RSFO from different origins using Fourier-transform infrared (FTIR) spectra and pattern recognition techniques. All of the RSFO's FTIR spectra were very similar. The FTIR vibrations showed the presence of triglycerides as the main composition in fish oils. Principal component analysis (PCA) could separate the RSFO according to sample origin. Supervised pattern recognition of partial least square-discriminant analysis (PLS-DA) and sparse PLS-DA (sPLS-DA) successfully discriminated and classified different Lutjanus species of fish oils obtained from different origins. The vibration of functional groups at 1711, 1653, 1745, and 3012 per cm were considered for their important contributions in discriminating of Lutjanus species (variable importance in projection, variable importance in the projection score >1). Fish oils obtained from the same species were classified into the same class indicating similar chemical compositions. Among the three pattern recognition techniques used, sPLS-DA offers the best model for the discrimination and classification of Lutjanus fish oils. It can be concluded that FTIR spectroscopy in combination with the pattern recognition technique is the potential to be used for of fish oil authentication to verify the quality of the fish oils. It can be further developed as a rapid and effective method for fish oil authentication.

4.
Anim Biosci ; 37(5): 918-928, 2024 May.
Article in English | MEDLINE | ID: mdl-38228131

ABSTRACT

OBJECTIVE: The adulteration of raw beef (BMr) with dog meat (DMr) and pork (PMr) becomes a serious problem because it is associated with halal status, quality, and safety of meats. This research aimed to develop an effective authentication method to detect non-halal meats (dog meat and pork) in beef using metabolomics approach. METHODS: Liquid chromatography-high resolution mass spectrometry (LC-HRMS) using untargeted approach combined with chemometrics was applied for analysis non-halal meats in BMr. RESULTS: The untargeted metabolomics approach successfully identified various metabolites in BMr DMr, PMr, and their mixtures. The discrimination and classification between authentic BMr and those adulterated with DMr and PMr were successfully determined using partial least square-discriminant analysis (PLS-DA) with high accuracy. All BMr samples containing non-halal meats could be differentiated from authentic BMr. A number of discriminating metabolites with potential as biomarkers to discriminate BMr in the mixtures with DMr and PMr could be identified from the analysis of variable importance for projection value. Partial least square (PLS) and orthogonal PLS (OPLS) regression using discriminating metabolites showed high accuracy (R2>0.990) and high precision (both RMSEC and RMSEE <5%) in predicting the concentration of DMr and PMr present in beef indicating that the discriminating metabolites were good predictors. The developed untargeted LC-HRMS metabolomics and chemometrics successfully identified non-halal meats adulteration (DMr and PMr) in beef with high sensitivity up to 0.1% (w/w). CONCLUSION: A combination of LC-HRMS untargeted metabolomic and chemometrics promises to be an effective analytical technique for halal authenticity testing of meats. This method could be further standardized and proposed as a method for halal authentication of meats.

5.
Anal Sci ; 40(3): 385-397, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095741

ABSTRACT

Due to the different price and high quality, halal meat such as beef can be adulterated with non-halal meat with low price to get an economical price. The objective of this research was to develop an analytical method for halal authentication testing of beef meatballs (BM) from dog meat (DM) using a non-targeted metabolomics approach employing liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and chemometrics. The differentiation of authentic BM from that adulterated with DM was successfully performed using partial least square-discriminant analysis (PLS-DA) with high accuracy (R2X = 0.980, and R2Y = 0.980) and good predictivity (Q2 = 0.517). In addition, partial least square (PLS) and orthogonal PLS (OPLS) were successfully used to predict the DM added (% w/w) in BM with high accuracy (R2 > 0.990). A number of metabolites, potential for biomarker candidates, were identified to differentiate BM and that adulterated with DM. It showed that the combination of a non-targeted LC-HRMS Orbitrap metabolomics and chemometrics could detect up to 0.1% w/w of DM adulteration. The developed method was successfully applied for analysis of commercial meatball samples (n = 28). Moreover, pathway analysis revealed that beta-alanine, histidine, and ether lipid metabolism were significantly affected by dog meat adulteration. In summary, this developed method has great potential to be developed and used as an alternative method for analysis of non-halal meats in halal meat products.


Subject(s)
Chemometrics , Meat Products , Dogs , Cattle , Animals , Chromatography, High Pressure Liquid , Meat/analysis , Meat Products/analysis , Discriminant Analysis , Metabolomics
6.
Article in English | MEDLINE | ID: mdl-38112992

ABSTRACT

Bacterial cellulose is a natural polymer produced by fermentation of coconut water using Acetobacter xylinum bacteria. This study aimed to synthesize a novel composite of bacterial cellulose impregnated with plant extracts that had an antibacterial activity that have the potential to be used as a food packaging material to maintain food quality. Pure bacterial cellulose (pure BC) was impregnated using Ageratum conyzoides L. leaf extract (AC-BC) and Chromolaena odorata L. leaf extract (CO-BC), which contain secondary metabolites with potential as antibacterial. The study began with the synthesis of pure BC, AC-BC, and CO-BC composites then characterized by SEM-EDX and FTIR, continued with antibacterial activity tests against S. aureus, S. typhimurium, E. coli, and their biodegradability tests. The results of SEM and FTIR characterization showed the success of the impregnation process for antibacterial compounds. The results of the antibacterial activity of AC-BC disc diffusion against S. typhimurium and E. coli showed good antibacterial activity of 9.82 mm and 8.41 mm, respectively. The similar result showed with the antibacterial activity of CO-BC disc diffusion against S. typhimurium and E. coli that showed good activity of 9.73 mm and 6.82 mm, respectively. On the other hand, the biodegradability test showed that the impregnation of bacterial cellulose slowed down the degradation process in the soil. This study confirmed the potential application of bacterial cellulose-plant extracts as an active and biodegradable food packaging.

7.
Indian J Microbiol ; 63(3): 263-271, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37781022

ABSTRACT

The essential oil has been reported to be one of the Angiotensin I-Converting Enzyme (ACE) inhibitor resources. Moreover, it has been proven against bacterial pathogens that cause infectious diseases. Amomum compactum is one source of essential oil, known as Javanese cardamom is a spice herb commonly used for flavouring food and traditional medicine in Indonesia. However, ACE inhibition activity of A. compactum has not been reported. The purposes of this study were to identify the main constituent of volatile compounds, inhibition activity toward bacteria, and antihypertension potency of A. compactum essential oils. Volatile compounds were investigated using Gas Chromatography-Mass Spectrometry (GC-MS). The antimicrobial activity was observed using the microdilution method toward Pseudomonas aeruginosa, Bacillus subtilis, Escherichia coli, and Staphylococcus aureus. The antihypertension effect was studied using an ACE inhibition assay. The result showed that eucalyptol was a primary compound of A. compactum fruit either in Banjar (BJR) and Bogor (BGR) essential oils with the value of 62.22% and 66.23%, respectively. Both BJR and BGR are more active to inhibit gram-positive bacteria (B. subtilis) with MIC values of 1 mg/mL. Meanwhile, the BJR exhibited a higher inhibitory activity effect toward ACE compared to BGR with the value of IC50 64.86 ± 0.57 µg/mL. These findings suggest that A. compactum essential oil can be the potential to lead to the treatment of hypertension as an ACE inhibitor and antibacterial agent. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01080-x.

8.
Molecules ; 28(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37630216

ABSTRACT

Beef sausage (BS) is one of the most favored meat products due to its nutrition and good taste. However, for economic purposes, BS is often adulterated with pork by unethical players. Pork consumption is strictly prohibited for religions including Islam and Judaism. Therefore, advanced detection methods are highly required to warrant the halal authenticity of BS. This research aimed to develop a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method to determine the halal authenticity of BS using an untargeted metabolomics approach. LC-HRMS was capable of detecting various metabolites in BS and BS containing pork. The presence of pork in BS could be differentiated using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) with high accuracy. PLS-DA perfectly classified authentic BS and BS containing pork in all concentration levels of pork with R2X = (0.821), R2Y(= 0.984), and Q2 = (0.795). The level of pork in BS was successfully predicted through partial least squares (PLS) and orthogonal PLS (OPLS) chemometrics. Both models gave high R2 (>0.99) actual and predicted values as well as few errors, indicating good accuracy and precision. Identification of discriminating metabolites' potential as biomarker candidates through variable importance for projections (VIP) value revealed metabolites of 2-arachidonyl-sn-glycero-3-phosphoethanolamine, 3-hydroxyoctanoylcarnitine, 8Z,11Z,14Z-eicosatrienoic acid, D-(+)-galactose, oleamide, 3-hydroxyhexadecanoylcarnitine, arachidonic acid, and α-eleostearic acid as good indicators to detect pork. It can be concluded that LC-HRMS metabolomics combined with PCA, PLS-DA, PLS, and OPLS was successfully used to detect pork adulteration in beef sausages. The results imply that LC-HRMS untargeted metabolomics in combination with chemometrics is a promising alternative as an analytical technique to detect pork in sausage products. Further analysis of larger samples is required to warrant the reproducibility.


Subject(s)
Meat Products , Pork Meat , Red Meat , Animals , Cattle , Swine , Chemometrics , Reproducibility of Results , Metabolomics
9.
Molecules ; 28(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513396

ABSTRACT

Omega-3 fatty acids v(ω-3 FAs) such as EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) and omega-6 fatty acids (ω-6 FAs) such as linoleic acid and arachidonic acid are important fatty acids responsible for positive effects on human health. The main sources of ω-3 FAs and ω-6 FAs are marine-based products, especially fish oils. Some food, supplements, and pharmaceutical products would include fish oils as a source of ω-3 FAs and ω-6 FAs; therefore, the quality assurance of these products is highly required. Some analytical methods mainly based on spectroscopic and chromatographic techniques have been reported. Molecular spectroscopy such as Infrared and Raman parallel to chemometrics has been successfully applied for quantitative analysis of individual and total ω-3 FAs and ω-6 FAs. This spectroscopic technique is typically applied as the alternative method to official methods applying chromatographic methods. Due to the capability to provide the separation of ω-3 FAs and ω-6 FAs from other components in the products, gas and liquid chromatography along with sophisticated detectors such as mass spectrometers are ideal analytical methods offering sensitive and specific results that are suitable for routine quality control.


Subject(s)
Fatty Acids, Omega-3 , Fatty Acids , Humans , Fatty Acids, Omega-3/chemistry , Fish Oils/chemistry , Eicosapentaenoic Acid , Docosahexaenoic Acids , Dietary Supplements/analysis , Spectrum Analysis , Linoleic Acid
10.
Molecules ; 27(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36500423

ABSTRACT

Adulteration of high-quality meat products using lower-priced meats, such as pork, is a crucial issue that could harm consumers. The consumption of pork is strictly forbidden in certain religions, such as Islam and Judaism. Therefore, the objective of this research was to develop untargeted metabolomics using liquid chromatography-high resolution mass spectrometry (LC-HRMS) combined with chemometrics for analysis of pork in beef meatballs for halal authentication. We investigated the use of non-targeted LC-HRMS as a method to detect such food adulteration. As a proof of concept using six technical replicates of pooled samples from beef and pork meat, we could show that metabolomics using LC-HRMS could be used for high-throughput screening of metabolites in meatballs made from beef and pork. Chemometrics of principal component analysis (PCA) was successfully used to differentiate beef meatballs and pork meatball samples. Partial least square-discriminant analysis (PLS-DA) clearly discriminated between halal and non-halal beef meatball samples with 100% accuracy. Orthogonal projection to latent structures-discriminant analysis (OPLS-DA) perfectly discriminated and classified meatballs made from beef, pork, and a mixture of beef-pork with a good level of fitness (R2X = 0.88, R2Y = 0.71) and good predictivity (Q2 = 0.55). Partial least square (PLS) and orthogonal PLS (OPLS) were successfully applied to predict the concentration of pork present in beef meatballs with high accuracy (R2 = 0.99) and high precision. Thirty-five potential metabolite markers were identified through VIP (variable important for projections) analysis. Metabolites of 1-(1Z-hexadecenyl)-sn-glycero-3-phosphocholine, acetyl-l-carnitine, dl-carnitine, anserine, hypoxanthine, linoleic acid, and prolylleucine had important roles for predicting pork in beef meatballs through S-line plot analysis. It can be concluded that a combination of untargeted metabolomics using LC-HRMS and chemometrics is promising to be developed as a standard analytical method for halal authentication of highly processed meat products.


Subject(s)
Meat Products , Red Meat , Cattle , Animals , Swine , Red Meat/analysis , Meat Products/analysis , Meat/analysis , Mass Spectrometry , Metabolomics , Chromatography, Liquid
11.
Heliyon ; 8(10): e10882, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36247117

ABSTRACT

The purpose of this research was to characterize the volatile compounds, texture, and color profile of meatballs made from beef, rat, wild boar, and their combinations. Volatile compounds were analyzed using SPME/GC-MS and multivariate data analysis (PCA, PLS-DA). Additionally, several textural features such as hardness, gumminess, chewiness, cohesiveness, and colour (L, a∗, b∗, C, and h) were also analyzed. The findings revealed that texture and color characteristics can only be used to differentiate meatballs based on their raw meat materials when meat adulterants are used in high concentrations (≥50%). PLS-DA analysis of volatile data revealed distinct groupings among various types of meatballs, including meatballs adulterated with rat or wild boar meat at the lowest percentage used in this study (20%). By using VIP and correlation coefficient, the strongest markers in beef, rat, and wild boar meatballs were identified as (Z)-2-amino-5-methyl-benzoic acid, 2-heptenal, and cyclobutanol, respectively. Nonanal was consistently found as a significant marker in the meatballs made from a mixture of beef-rat and beef-wild boar at different ratios. This study demonstrated that the volatile profile of meat is more reliable than physicochemical profiles for developing an analytical tool for quickly identifying undesired meat in meat-derived products.

12.
Food Chem ; 386: 132856, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35367799

ABSTRACT

Pangasius hypopthalmus is well known as a good source of protein. However, Pangasius hypopthalmus meat (PHM) can be adulterated with pork for economic concern, thus, analytical methods for authentication are required. Untargeted metabolomics and proteomics using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and chemometrics of principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) was successfully used to differentiate authentic and adulterated PHM with the good of fitness (R > 0.95) and good of predictivity (Q > 0.5). Metabolites of PC(o-18:0/18:2(9Z,12Z)) was found to be a potential marker for pork whereas DMPC (dimyristoylphosphatidylcholine) was a potential marker for PHM. Meanwhile, pork peptide marker of myoglobin (HPGDFGADAQGAMSK) and ß-hemoglobin (FFESFGDLSNADAVMGNPK) could be identified. Both metabolomics and proteomics using LC-HRMS could detect pork at the lowest concentration level (0.5% w/w). In conclusion, untargeted metabolomics and proteomics using LC-HRMS in combination with chemometrics could be used as powerful methods to detect pork adulteration in fish meat.


Subject(s)
Pork Meat , Red Meat , Animals , Biomarkers , Chromatography, Liquid/methods , Mass Spectrometry/methods , Meat , Metabolomics/methods , Proteomics , Swine
13.
Int J Food Sci ; 2022: 7643959, 2022.
Article in English | MEDLINE | ID: mdl-35242875

ABSTRACT

Expensive milk such as horse's milk (HM) may be the target of adulteration by other milk such as goat's milk (GM) and cow's milk (CM). FTIR spectroscopy in combination with chemometrics of linear discriminant analysis (LDA) and multivariate calibrations of partial least square regression (PLSR) and principal component regression (PCR) was used for authentication of HM from GM and CM. Milk was directly subjected to attenuated total reflectance (ATR) spectral measurement at midinfrared regions (4000-650 cm-1). Results showed that LDA could make clear discrimination between HM and HM adulterated with CM and GM without any misclassification observed. PLSR using 2nd derivative spectra at 3200-2800 and 1300-1000 cm-1 provided the best model for the relationship between actual values of GM and FTIR predicted values than PCR. At this condition, R 2 values for calibration and validation models obtained were 0.9995 and 0.9612 with RMSEC and RMSEP values of 0.0093 and 0.0794. PLSR using normal FTIR spectra at 3800-3000 and 1500-1000 cm-1 offered R 2 for the relationship between actual values of CM and FTIR predicted values of >0.99 in calibration and validation models with low errors of RMSEC of 0.0164 and RMSEP of 0.0336 during authentication of HM from CM. Therefore, FTIR spectroscopy in combination with LDA and PLSR is an effective method for authentication of HM from GM and CM.

14.
Molecules ; 27(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35208988

ABSTRACT

Herbal medicines (HMs) are regarded as one of the traditional medicines in health care to prevent and treat some diseases. Some herbal components such as turmeric and ginger are used as HMs, therefore the identification and confirmation of herbal use are very necessary. In addition, the adulteration practice, mainly motivated to gain economical profits, may occur by substituting the high price of HMs with lower-priced ones or by addition of certain chemical constituents known as Bahan Kimia Obat (chemical drug ingredients) in Indonesia. Some analytical methods based on spectroscopic and chromatographic methods are developed for the authenticity and confirmation of the HMs used. Some approaches are explored during HMs authentication including single-component analysis, fingerprinting profiles, and metabolomics studies. The absence of reference standards for certain chemical markers has led to exploring the fingerprinting approach as a tool for the authentication of HMs. During fingerprinting-based spectroscopic and chromatographic methods, the data obtained were big, therefore the use of chemometrics is a must. This review highlights the application of fingerprinting profiles using variables of spectral and chromatogram data for authentication in HMs. Indeed, some chemometrics techniques, mainly pattern recognition either unsupervised or supervised, were applied for this purpose.


Subject(s)
Curcuma/chemistry , Metabolomics , Plants, Medicinal/chemistry , Zingiber officinale/chemistry , Chromatography, Liquid , Nuclear Magnetic Resonance, Biomolecular
15.
Molecules ; 26(24)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34946709

ABSTRACT

Curcuma longa, Curcuma xanthorrhiza, and Curcuma manga have been widely used for herbal or traditional medicine purposes. It was reported that turmeric plants provided several biological activities such as antioxidant, anti-inflammatory, hepatoprotector, cardioprotector, and anticancer activities. Authentication of the Curcuma species is important to ensure its authenticity and to avoid adulteration practices. Plants from different origins will have different metabolite compositions because metabolites are affected by soil nutrition, climate, temperature, and humidity. 1H-NMR spectroscopy, principal component analysis (PCA), and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) were used for authentication of C. longa, C. xanthorrhiza, and C. manga from seven different origins in Indonesia. From the 1H-NMR analysis it was obtained that 14 metabolites were responsible for generating classification model such as curcumin, demethoxycurcumin, alanine, methionine, threonine, lysine, alpha-glucose, beta-glucose, sucrose, alpha-fructose, beta-fructose, fumaric acid, tyrosine, and formate. Both PCA and OPLS-DA model demonstrated goodness of fit (R2 value more than 0.8) and good predictivity (Q2 value more than 0.45). All OPLS-DA models were validated by assessing the permutation test results with high value of original R2 and Q2. It can be concluded that metabolite fingerprinting using 1H-NMR spectroscopy and chemometrics provide a powerful tool for authentication of herbal and medicinal plants.


Subject(s)
Curcuma/chemistry , Curcuma/classification , Nuclear Magnetic Resonance, Biomolecular , Plant Extracts/analysis
16.
Int J Food Sci ; 2021: 8853358, 2021.
Article in English | MEDLINE | ID: mdl-34307647

ABSTRACT

Milk products obtained from cow, goat, buffalo, sheep, and camel as well as fermented forms such as cheese, yogurt, kefir, and butter are in a category of the most nutritious foods due to their high contents of high protein contributing to total daily energy intake. For certain reasons, high price milk products may be adulterated with low-quality ones or with foreign substances such as melamine and formalin which are added into them; therefore, a comprehensive review on analytical methods capable of detecting milk adulteration is needed. The objective of this narrative review is to highlight the use of vibrational spectroscopies (near infrared, mid infrared, and Raman) combined with multivariate analysis for authentication of milk products. Articles, conference reports, and abstracts from several databases including Scopus, PubMed, Web of Science, and Google Scholar were used in this review. By selecting the correct conditions (spectral treatment, normal versus derivative spectra at wavenumbers region, and chemometrics techniques), vibrational spectroscopy is a rapid and powerful analytical technique for detection of milk adulteration. This review can give comprehensive information for selecting vibrational spectroscopic methods combined with chemometrics techniques for screening the adulteration practice of milk products.

17.
Molecules ; 25(22)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238638

ABSTRACT

Currently, the authentication analysis of edible fats and oils is an emerging issue not only by producers but also by food industries, regulators, and consumers. The adulteration of high quality and expensive edible fats and oils as well as food products containing fats and oils with lower ones are typically motivated by economic reasons. Some analytical methods have been used for authentication analysis of food products, but some of them are complex in sampling preparation and involving sophisticated instruments. Therefore, simple and reliable methods are proposed and developed for these authentication purposes. This review highlighted the comprehensive reports on the application of infrared spectroscopy combined with chemometrics for authentication of fats and oils. New findings of this review included (1) FTIR spectroscopy combined with chemometrics, which has been used to authenticate fats and oils; (2) due to as fingerprint analytical tools, FTIR spectra have emerged as the most reported analytical techniques applied for authentication analysis of fats and oils; (3) the use of chemometrics as analytical data treatment is a must to extract the information from FTIR spectra to be understandable data. Next, the combination of FTIR spectroscopy with chemometrics must be proposed, developed, and standardized for authentication and assuring the quality of fats and oils.


Subject(s)
Dietary Fats, Unsaturated/analysis , Fats/chemistry , Food Analysis , Food/standards , Spectroscopy, Fourier Transform Infrared , Fats/analysis , Food Analysis/methods , Food Quality , Plant Oils/analysis , Plant Oils/chemistry
18.
Molecules ; 25(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867389

ABSTRACT

The identification of adulteration practices of medicinal plants used as herbal medicine is very important to ensure the quality, safety, and efficacy. In this study, thin layer chromatography (TLC) and proton nuclear magnetic resonance (1H-NMR)-based metabolite fingerprinting coupled with multivariate analysis were used for authentication of Curcuma xanthorrhiza extract from Curcuma aeruginosa. Curcumin contents obtained from C. xanthorrhiza extract from various regions were in the range of 0.74%-1.23%. Meanwhile, curcumin contents obtained from C. xanthorrhiza extract adulterated with 0%, 10%, 25%, 40%, 50%, and 75% of C. aeruginosa were 1.02%, 0.96%, 0.86%, 0.69%, 0.43%, and 0.27%, respectively. The decreasing of curcumin contents in adulterant concentrations of 40% and more in C. xanthorrhiza rhizome could indicate the adulteration with other rhizomes. Multivariate analysis of PCA (principal component analysis) using data set obtained from 1H-NMR spectra clearly discriminated pure and adulterated C. xanthorrhiza with C. aeruginosa. OPLS-DA (orthogonal projections to latent structures-discriminant analysis) successfully classified pure and adulterated C. xanthorrhiza with higher R2X (0.965), R2Y (0.958), and Q2(cum) (0.93). It can be concluded that 1H-NMR-based metabolite fingerprinting coupled with PCA and OPLS-DA offers an adequate method to assess adulteration practice and to evaluate the authentication of C. xanthorrhiza extracts.


Subject(s)
Curcuma/chemistry , Curcumin/analysis , Drug Contamination , Plant Extracts/chemistry , Rhizome/chemistry , Chromatography, Thin Layer , Multivariate Analysis , Plants, Medicinal/chemistry , Proton Magnetic Resonance Spectroscopy
19.
Int J Mol Sci ; 21(14)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708254

ABSTRACT

Halal is an Arabic term used to describe any components allowed to be used in any products by Muslim communities. Halal food and halal pharmaceuticals are any food and pharmaceuticals which are safe and allowed to be consumed according to Islamic law (Shariah). Currently, in line with halal awareness, some Muslim countries such as Indonesia, Malaysia, and Middle East regions have developed some standards and regulations on halal products and halal certification. Among non-halal components, the presence of pig derivatives (lard, pork, and porcine gelatin) along with other non-halal meats (rat meat, wild boar meat, and dog meat) is typically found in food and pharmaceutical products. This review updates the recent application of molecular spectroscopy, including ultraviolet-visible, infrared, Raman, and nuclear magnetic resonance (NMR) spectroscopies, in combination with chemometrics of multivariate analysis, for analysis of non-halal components in food and pharmaceutical products. The combination of molecular spectroscopic-based techniques and chemometrics offers fast and reliable methods for screening the presence of non-halal components of pig derivatives and non-halal meats in food and pharmaceutical products.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Meat/analysis , Pharmaceutical Preparations/analysis , Spectrum Analysis, Raman/methods , Spectrum Analysis/methods , Animals , Dietary Fats/analysis , Dogs , Food Quality , Indonesia , Islam , Malaysia , Middle East , Rats , Swine
SELECTION OF CITATIONS
SEARCH DETAIL