Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38948882

ABSTRACT

Season length and its associated variables can influence the expression of social behaviors, including the occurrence of eusociality in insects. Eusociality can vary widely across environmental gradients, both within and between different species. Numerous theoretical models have been developed to examine the life history traits that underlie the emergence and maintenance of eusociality, yet the impact of seasonality on this process is largely uncharacterized. Here, we present a theoretical model that incorporates season length and offspring development time into a single, individual-focused model to examine how these factors can shape the costs and benefits of social living. We find that longer season lengths and faster brood development times are sufficient to favor the emergence and maintenance of a social strategy, while shorter seasons favor a solitary one. We also identify a range of season lengths where social and solitary strategies can coexist. Moreover, our theoretical predictions are well-matched to the natural history and behavior of two flexibly-eusocial bee species, suggesting our model can make realistic predictions about the evolution of different social strategies. Broadly, this work reveals the crucial role that environmental conditions can have in shaping social behavior and its evolution and underscores the need for further models that explicitly incorporate such variation to study evolutionary trajectories of eusociality.

2.
Nat Commun ; 15(1): 5890, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003262

ABSTRACT

Protein turnover is critical for proteostasis, but turnover quantification is challenging, and even in well-studied E. coli, proteome-wide measurements remain scarce. Here, we quantify the turnover rates of ~3200 E. coli proteins under 13 conditions by combining heavy isotope labeling with complement reporter ion quantification and find that cytoplasmic proteins are recycled when nitrogen is limited. We use knockout experiments to assign substrates to the known cytoplasmic ATP-dependent proteases. Surprisingly, none of these proteases are responsible for the observed cytoplasmic protein degradation in nitrogen limitation, suggesting that a major proteolysis pathway in E. coli remains to be discovered. Lastly, we show that protein degradation rates are generally independent of cell division rates. Thus, we present broadly applicable technology for protein turnover measurements and provide a rich resource for protein half-lives and protease substrates in E. coli, complementary to genomics data, that will allow researchers to study the control of proteostasis.


Subject(s)
Cytoplasm , Escherichia coli Proteins , Escherichia coli , Nitrogen , Proteolysis , Escherichia coli/metabolism , Escherichia coli/genetics , Nitrogen/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Cytoplasm/metabolism , Proteome/metabolism , Proteostasis , Proteomics/methods , Isotope Labeling , ATP-Dependent Proteases/metabolism , ATP-Dependent Proteases/genetics
3.
bioRxiv ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39071398

ABSTRACT

Bacteria commonly exist in multicellular, surface-attached communities called biofilms. Biofilms are central to ecology, medicine, and industry. The Vibrio cholerae pathogen forms biofilms from single founder cells that, via cell division, mature into three-dimensional structures with distinct, yet reproducible, regional architectures. To define mechanisms underlying biofilm developmental transitions, we establish a single-molecule fluorescence in situ hybridization (smFISH) approach that enables accurate quantitation of spatiotemporal gene-expression patterns in biofilms at individual-cell resolution. smFISH analyses of V. cholerae biofilm regulatory and structural genes demonstrate that, as biofilms mature, matrix gene expression decreases, and simultaneously, a pattern emerges in which matrix gene expression is largely confined to peripheral biofilm cells. Both quorum sensing and c-di-GMP-signaling are required to generate the proper temporal pattern of matrix gene expression, while c-di-GMP-signaling sets the regional expression pattern without input from quorum sensing. The smFISH strategy provides insight into mechanisms conferring particular fates to individual biofilm cells.

4.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38853967

ABSTRACT

Many bacteria inhabit thin layers of water on solid surfaces both naturally in soils or on hosts or textiles and in the lab on agar hydrogels. In these environments, cells experience capillary forces, yet an understanding of how these forces shape bacterial collective behaviors remains elusive. Here, we show that the water menisci formed around bacteria lead to capillary attraction between cells while still allowing them to slide past one another. We develop an experimental apparatus that allows us to control bacterial collective behaviors by varying the strength and range of capillary forces. Combining 3D imaging and cell tracking with agent-based modeling, we demonstrate that capillary attraction organizes rod-shaped bacteria into densely packed, nematic groups, and profoundly influences their collective dynamics and morphologies. Our results suggest that capillary forces may be a ubiquitous physical ingredient in shaping microbial communities in partially hydrated environments.

5.
bioRxiv ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38712130

ABSTRACT

Many bacteria live in polymeric fluids, such as mucus, environmental polysaccharides, and extracellular polymers in biofilms. However, lab studies typically focus on cells in polymer-free fluids. Here, we show that interactions with polymers shape a fundamental feature of bacterial life-how they proliferate in space in multicellular colonies. Using experiments, we find that when polymer is sufficiently concentrated, cells generically and reversibly form large serpentine "cables" as they proliferate. By combining experiments with biophysical theory and simulations, we demonstrate that this distinctive form of colony morphogenesis arises from an interplay between polymer-induced entropic attraction between neighboring cells and their hindered ability to diffusely separate from each other in a viscous polymer solution. Our work thus reveals a pivotal role of polymers in sculpting proliferating bacterial colonies, with implications for how they interact with hosts and with the natural environment, and uncovers quantitative principles governing colony morphogenesis in such complex environments.

6.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38818736

ABSTRACT

When phage infect their bacterial hosts, they may either lyse the cell and generate a burst of new phage, or lysogenize the bacterium, incorporating the phage genome into it. Phage lysis/lysogeny strategies are assumed to be highly optimized, with the optimal tradeoff depending on environmental conditions. However, in nature, phage of radically different lysis/lysogeny strategies coexist in the same environment, preying on the same bacteria. How can phage preying on the same bacteria coexist if one is more optimal than the other? Here, we address this conundrum within a modeling framework, simulating the population dynamics of communities of phage and their lysogens. We find that coexistence between phage of different lysis/lysogeny strategies is a natural outcome of chaotic population dynamics that arise within sufficiently diverse communities, which ensure no phage is able to absolutely dominate its competitors. Our results further suggest a bet-hedging mechanism at the level of the phage pan-genome, wherein obligate lytic (virulent) strains typically outcompete temperate strains, but also more readily fluctuate to extinction within a local community.


Subject(s)
Bacteria , Bacteriophages , Lysogeny , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Bacteria/virology , Bacteria/genetics , Bacteria/classification , Population Dynamics , Models, Biological , Genome, Viral
7.
J Chem Phys ; 160(14)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38591689

ABSTRACT

Phase separation of biomolecules can facilitate their spatiotemporally regulated self-assembly within living cells. Due to the selective yet dynamic exchange of biomolecules across condensate interfaces, condensates can function as reactive hubs by concentrating enzymatic components for faster kinetics. The principles governing this dynamic exchange between condensate phases, however, are poorly understood. In this work, we systematically investigate the influence of client-sticker interactions on the exchange dynamics of protein molecules across condensate interfaces. We show that increasing affinity between a model protein scaffold and its client molecules causes the exchange of protein chains between the dilute and dense phases to slow down and that beyond a threshold interaction strength, this slowdown in exchange becomes substantial. Investigating the impact of interaction symmetry, we found that chain exchange dynamics are also considerably slower when client molecules interact equally with different sticky residues in the protein. The slowdown of exchange is due to a sequestration effect, by which there are fewer unbound stickers available at the interface to which dilute phase chains may attach. These findings highlight the fundamental connection between client-scaffold interaction networks and condensate exchange dynamics.


Subject(s)
Biomolecular Condensates , Phase Separation , Humans , Kinetics , Surface Tension
8.
PNAS Nexus ; 3(1): pgad431, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38196923

ABSTRACT

Phages-viruses that infect bacteria-have evolved over billions of years to overcome bacterial defenses. Temperate phage, upon infection, can "choose" between two pathways: lysis-in which the phage create multiple new phage particles, which are then liberated by cell lysis, and lysogeny-where the phage's genetic material is added to the bacterial DNA and transmitted to the bacterial progeny. It was recently discovered that some phages can read information from the environment related to the density of bacteria or the number of nearby infection attempts. Such information may help phage make the right choice between the two pathways. Here, we develop a theoretical model that allows an infecting phage to change its strategy (i.e. the ratio of lysis to lysogeny) depending on an outside signal, and we find the optimal strategy that maximizes phage proliferation. While phages that exploit extra information naturally win in competition against phages with a fixed strategy, there may be costs to information, e.g. as the necessary extra genes may affect the growth rate of a lysogen or the burst size of new phage for the lysis pathway. Surprisingly, even when phages pay a large price for information, they can still maintain an advantage over phages that lack this information, indicating the high benefit of intelligence gathering in phage-bacteria warfare.

SELECTION OF CITATIONS
SEARCH DETAIL