Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 288(38): 27534-27544, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23884410

ABSTRACT

The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate the role of the DAT C terminus in AMPH-evoked DA efflux using cell-permeant dominant-negative peptides. A peptide, which corresponded to the last 24 C-terminal residues of DAT (TAT-C24 DAT) and thereby contained the Ca(2+)-calmodulin-dependent protein kinase IIα (CaMKIIα) binding domain and the PSD-95/Discs-large/ZO-1 (PDZ)-binding sequence of DAT, was made membrane-permeable by fusing it to the cell membrane transduction domain of the HIV-1 Tat protein (TAT-C24WT). The ability of TAT-C24WT but not a scrambled peptide (TAT-C24Scr) to block the CaMKIIα-DAT interaction was supported by co-immunoprecipitation experiments in heterologous cells. In heterologous cells, we also found that TAT-C24WT, but not TAT-C24Scr, decreased AMPH-evoked 1-methyl-4-phenylpyridinium efflux. Moreover, chronoamperometric recordings in striatum revealed diminished AMPH-evoked DA efflux in mice preinjected with TAT-C24WT. Both in heterologous cells and in striatum, the peptide did not further inhibit efflux upon KN-93-mediated inhibition of CaMKIIα activity, consistent with a dominant-negative action preventing binding of CaMKIIα to the DAT C terminus. This was further supported by the ability of a peptide with perturbed PDZ-binding sequence, but preserved CaMKIIα binding (TAT-C24AAA), to diminish AMPH-evoked DA efflux in vivo to the same extent as TAT-C24WT. Finally, AMPH-induced locomotor hyperactivity was attenuated following systemic administration of TAT-C24WT but not TAT-C24Scr. Summarized, our findings substantiate that DAT C-terminal protein-protein interactions are critical for AMPH-evoked DA efflux and suggest that it may be possible to target protein-protein interactions to modulate transporter function and interfere with psychostimulant effects.


Subject(s)
Amphetamine/pharmacology , Cell-Penetrating Peptides/pharmacology , Central Nervous System Stimulants/pharmacology , Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/pharmacology , Dopamine/metabolism , Amphetamine/adverse effects , Animals , Benzylamines/pharmacology , Cell-Penetrating Peptides/metabolism , Central Nervous System Stimulants/adverse effects , Dopamine Plasma Membrane Transport Proteins/pharmacokinetics , Humans , Male , Mice , Motor Activity/drug effects , PDZ Domains , Protein Kinase C-alpha/antagonists & inhibitors , Protein Kinase C-alpha/metabolism , Protein Kinase Inhibitors/pharmacology , Sulfonamides/pharmacology
2.
J Biol Chem ; 287(35): 29627-35, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22778257

ABSTRACT

The dopamine transporter (DAT) is a crucial regulator of dopaminergic neurotransmission, controlling the length and brevity of dopaminergic signaling. DAT is also the primary target of psychostimulant drugs such as cocaine and amphetamines. Conversely, methylphenidate and amphetamine are both used clinically in the treatment of attention-deficit hyperactivity disorder and narcolepsy. The action of amphetamines, which induce transport reversal, relies primarily on the ionic composition of the intra- and extracellular milieus. Recent findings suggest that DAT interacting proteins may also play a significant role in the modulation of reverse dopamine transport. The pharmacological inhibition of the serine/threonine kinase αCaMKII attenuates amphetamine-triggered DAT-mediated 1-methyl-4-phenylpyridinium (MPP(+)) efflux. More importantly, αCaMKII has also been shown to bind DAT in vitro and is therefore believed to be an important player within the DAT interactome. Herein, we show that αCaMKII co-immunoprecipitates with DAT in mouse striatal synaptosomes. Mice, which lack αCaMKII or which express a permanently self-inhibited αCaMKII (αCaMKII(T305D)), exhibit significantly reduced amphetamine-triggered DAT-mediated MPP(+) efflux. Additionally, we investigated mice that mimic a neurogenetic disease known as Angelman syndrome. These mice possess reduced αCaMKII activity. Angelman syndrome mice demonstrated an impaired DAT efflux function, which was comparable with that of the αCaMKII mutant mice, indicating that DAT-mediated dopaminergic signaling is affected in Angelman syndrome.


Subject(s)
Angelman Syndrome/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Nerve Tissue Proteins/metabolism , Signal Transduction , Amino Acid Substitution , Amphetamine/pharmacology , Angelman Syndrome/genetics , Angelman Syndrome/pathology , Animals , Biological Transport, Active/drug effects , Biological Transport, Active/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cells, Cultured , Disease Models, Animal , Dopamine Agents/pharmacology , Dopamine Plasma Membrane Transport Proteins/genetics , Dopaminergic Neurons/pathology , Humans , Mice , Mice, Knockout , Mutation, Missense , Nerve Tissue Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...