Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Orphanet J Rare Dis ; 17(1): 27, 2022 01 29.
Article in English | MEDLINE | ID: mdl-35093143

ABSTRACT

Phelan-McDermid syndrome (PMS) was initially called the 22q13 deletion syndrome based on its etiology as a deletion of the distal long arm of chromosome 22. These included terminal and interstitial deletions, as well as other structural rearrangements. Later, pathogenetic variants and deletions of the SHANK3 gene were found to result in a phenotype consistent with PMS. The association between SHANK3 and PMS led investigators to consider disruption/deletion of SHANK3 to be a prerequisite for diagnosing PMS. This narrow definition of PMS based on the involvement of SHANK3 has the adverse effect of causing patients with interstitial deletions of chromosome 22 to "lose" their diagnosis. It also results in underreporting of individuals with interstitial deletions of 22q13 that preserve SHANK3. To reduce the confusion for families, clinicians, researchers, and pharma, a simple classification for PMS has been devised. PMS and will be further classified as PMS-SHANK3 related or PMS-SHANK3 unrelated. PMS can still be used as a general term, but this classification system is inclusive. It allows researchers, regulatory agencies, and other stakeholders to define SHANK3 alterations or interstitial deletions not affecting the SHANK3 coding region.


Subject(s)
Chromosome Disorders , Chromosome Deletion , Chromosome Disorders/genetics , Chromosomes, Human, Pair 22/genetics , Humans , Phenotype
2.
Article in English | MEDLINE | ID: mdl-34927075

ABSTRACT

Orexin receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Orexin receptors [42]) are activated by the endogenous polypeptides orexin-A and orexin-B (also known as hypocretin-1 and -2; 33 and 28 aa) derived from a common precursor, preproorexin or orexin precursor, by proteolytic cleavage and some typical peptide modifications [109]. Currently the only orexin receptor ligands in clinical use are suvorexant and lemborexant, which are used as hypnotics. Orexin receptor crystal structures have been solved [134, 133, 54, 117, 46].

3.
J Neuroinflammation ; 18(1): 213, 2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34537066

ABSTRACT

BACKGROUND: Inflammation in the central nervous system (CNS) is observed in many neurological disorders. Nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling plays an essential role in modulating neuroinflammation. CYR119 is a CNS-penetrant sGC stimulator that amplifies endogenous NO-sGC-cGMP signaling. We evaluated target engagement and the effects of CYR119 on markers of neuroinflammation in vitro in mouse microglial cells and in vivo in quinolinic acid (QA)-induced and high-fat diet-induced rodent neuroinflammation models. METHODS: Target engagement was verified in human embryonic kidney (HEK) cells, rat primary neurons, mouse SIM-A9 cells, and in rats by measuring changes in cGMP and downstream targets of sGC signaling [phosphorylated vasodilator-stimulated phosphoprotein (pVASP), phosphorylated cAMP-response element binding (pCREB)]. In SIM-A9 cells stimulated with lipopolysaccharides (LPS), markers of inflammation were measured when cells were treated with or without CYR119. In rats, microinjections of QA and vehicle were administered into the right and left hemispheres of striatum, respectively, and then rats were dosed daily with either CYR119 (10 mg/kg) or vehicle for 7 days. The activation of microglia [ionized calcium binding adaptor molecule 1 (Iba1)] and astrocytes [glial fibrillary acidic protein (GFAP)] was measured by immunohistochemistry. Diet-induced obese (DIO) mice were treated daily with CYR119 (10 mg/kg) for 6 weeks, after which inflammatory genetic markers were analyzed in the prefrontal cortex. RESULTS: In vitro, CYR119 synergized with exogenous NO to increase the production of cGMP in HEK cells and in primary rat neuronal cell cultures. In primary neurons, CYR119 stimulated sGC, resulting in accumulation of cGMP and phosphorylation of CREB, likely through the activation of protein kinase G (PKG). CYR119 attenuated LPS-induced elevation of interleukin 6 (IL-6) and tumor necrosis factor (TNF) in mouse microglial cells. Following oral dosing in rats, CYR119 crossed the blood-brain barrier (BBB) and stimulated an increase in cGMP levels in the cerebral spinal fluid (CSF). In addition, levels of proinflammatory markers associated with QA administration or high-fat diet feeding were lower in rodents treated with CYR119 than in those treated with vehicle. CONCLUSIONS: These data suggest that sGC stimulation could provide neuroprotective effects by attenuating inflammatory responses in nonclinical models of neuroinflammation.


Subject(s)
Anti-Inflammatory Agents/metabolism , Central Nervous System/metabolism , Cyclic GMP/metabolism , Inflammation Mediators/metabolism , Neurons/metabolism , Soluble Guanylyl Cyclase/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Biomarkers/metabolism , Cells, Cultured , Central Nervous System/drug effects , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Inflammation Mediators/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Rats , Rats, Sprague-Dawley
4.
Front Pharmacol ; 12: 656561, 2021.
Article in English | MEDLINE | ID: mdl-34108877

ABSTRACT

Effective treatments for neurodegenerative diseases remain elusive and are critically needed since the burden of these diseases increases across an aging global population. Nitric oxide (NO) is a gasotransmitter that binds to soluble guanylate cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP). Impairment of this pathway has been demonstrated in neurodegenerative diseases. Normalizing deficient NO-cGMP signaling could address multiple pathophysiological features of neurodegenerative diseases. sGC stimulators are small molecules that synergize with NO, activate sGC, and increase cGMP production. Many systemic sGC stimulators have been characterized and advanced into clinical development for a variety of non-central nervous system (CNS) pathologies. Here, we disclose the discovery of CY6463, the first brain-penetrant sGC stimulator in clinical development for the treatment of neurodegenerative diseases, and demonstrate its ability to improve neuronal activity, mediate neuroprotection, and increase cognitive performance in preclinical models. In several cellular assays, CY6463 was demonstrated to be a potent stimulator of sGC. In agreement with the known effects of sGC stimulation in the vasculature, CY6463 elicits decreases in blood pressure in both rats and mice. Relative to a non-CNS penetrant sGC stimulator, rodents treated with CY6463 had higher cGMP levels in cerebrospinal fluid (CSF), functional-magnetic-resonance-imaging-blood-oxygen-level-dependent (fMRI-BOLD) signals, and cortical electroencephalographic (EEG) gamma-band oscillatory power. Additionally, CY6463 improved cognitive performance in a model of cognitive disruption induced by the administration of a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist. In models of neurodegeneration, CY6463 treatment increased long-term potentiation (LTP) in hippocampal slices from a Huntington's disease mouse model and decreased the loss of dendritic spines in aged and Alzheimer's disease mouse models. In a model of diet-induced obesity, CY6463 reduced markers of inflammation in the plasma. Furthermore, CY6463 elicited an additive increase in cortical gamma-band oscillatory power when co-administered with donepezil: the standard of care in Alzheimer's disease. Together, these data support the clinical development of CY6463 as a novel treatment for neurodegenerative disorders.

5.
Behav Brain Res ; 356: 444-452, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29902478

ABSTRACT

Orexins are neuropeptides synthesized in the lateral hypothalamus that influence arousal, feeding, reward pathways, and the response to stress. However, the role of orexins in repeated stress is not fully characterized. Here, we examined how orexins and their receptors contribute to the coping response during repeated social defeat and subsequent anxiety-like and memory-related behaviors. Specifically, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to stimulate orexins prior to each of five consecutive days of social defeat stress in adult male rats. Additionally, we determined the role of the orexin 2 receptor in these behaviors by using a selective orexin 2 receptor antagonist (MK-1064) administered prior to each social defeat. Following the 5 day social defeat conditioning period, rats were evaluated in social interaction and novel object recognition paradigms to assess anxiety-like behavior and recognition memory, respectively. Activation of orexin neurons by DREADDs prior to each social defeat decreased the average latency to become defeated across 5 days, indicative of a passive coping strategy that we have previously linked to a stress vulnerable phenotype. Moreover, stimulation of orexin signaling during defeat conditioning decreased subsequent social interaction and performance in the novel object recognition test indicating increased subsequent anxiety-like behavior and reduced recognition memory. Blocking the orexin 2 receptor during repeated defeat did not alter these effects. Together, our results suggest that orexin neuron activation produces a passive coping phenotype during social defeat leading to subsequent anxiety-like behaviors and memory deficits.


Subject(s)
Behavior, Animal/physiology , Memory/physiology , Orexin Receptors/metabolism , Orexins/metabolism , Stress, Psychological/metabolism , Animals , Anxiety/physiopathology , Hypothalamic Area, Lateral/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Male , Neurons/physiology , Neuropeptides/metabolism , Rats, Sprague-Dawley , Social Behavior
6.
Sci Adv ; 4(7): eaat1294, 2018 07.
Article in English | MEDLINE | ID: mdl-30050989

ABSTRACT

To understand the transcriptomic organization underlying sleep and affective function, we studied a population of (C57BL/6J × 129S1/SvImJ) F2 mice by measuring 283 affective and sleep phenotypes and profiling gene expression across four brain regions. We identified converging molecular bases for sleep and affective phenotypes at both the single-gene and gene-network levels. Using publicly available transcriptomic datasets collected from sleep-deprived mice and patients with major depressive disorder (MDD), we identified three cortical gene networks altered by the sleep/wake state and depression. The network-level actions of sleep loss and depression were opposite to each other, providing a mechanistic basis for the sleep disruptions commonly observed in depression, as well as the reported acute antidepressant effects of sleep deprivation. We highlight one particular network composed of circadian rhythm regulators and neuronal activity-dependent immediate-early genes. The key upstream driver of this network, Arc, may act as a nexus linking sleep and depression. Our data provide mechanistic insights into the role of sleep in affective function and MDD.


Subject(s)
Depressive Disorder, Major/pathology , Gene Regulatory Networks , Sleep Deprivation/pathology , Animals , Antidepressive Agents/therapeutic use , Brain/metabolism , Cerebral Cortex/metabolism , Circadian Rhythm/genetics , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Disease Models, Animal , Genotype , Male , Mice , Mice, Inbred C57BL , Phenotype , Quantitative Trait Loci , Sleep Deprivation/drug therapy , Sleep Deprivation/genetics , Transcriptome
7.
J Neurochem ; 142(2): 204-214, 2017 07.
Article in English | MEDLINE | ID: mdl-28444767

ABSTRACT

Chronic insomnia is defined as a persistent difficulty with sleep initiation maintenance or non-restorative sleep. The therapeutic standard of care for this condition is treatment with gamma-aminobutyric acid (GABA)A receptor modulators, which promote sleep but are associated with a panoply of side effects, including cognitive and memory impairment. Dual orexin receptor antagonists (DORAs) have recently emerged as an alternative therapeutic approach that acts via a distinct and more selective wake-attenuating mechanism with the potential to be associated with milder side effects. Given their distinct mechanism of action, the current work tested the hypothesis that DORAs and GABAA receptor modulators differentially regulate neurochemical pathways associated with differences in sleep architecture and cognitive performance induced by these pharmacological mechanisms. Our findings showed that DORA-22 suppresses the release of the wake neurotransmitter histamine in the lateral hypothalamus, prefrontal cortex, and hippocampus with no significant alterations in acetylcholine levels. In contrast, eszopiclone, commonly used as a GABAA modulator, inhibited acetylcholine secretion across brain regions with variable effects on histamine release depending on the extent of wakefulness induction. In normal waking rats, eszopiclone only transiently suppressed histamine secretion, whereas this suppression was more obvious under caffeine-induced wakefulness. Compared with the GABAA modulator eszopiclone, DORA-22 elicits a neurotransmitter profile consistent with wake reduction that does not impinge on neurotransmitter levels associated with cognition and rapid eye movement sleep.


Subject(s)
Acetylcholine/metabolism , Hippocampus/drug effects , Histamine/metabolism , Hypothalamic Area, Lateral/drug effects , Orexin Receptor Antagonists/pharmacology , Piperidines/pharmacology , Prefrontal Cortex/drug effects , Triazoles/pharmacology , Animals , Hippocampus/metabolism , Male , Prefrontal Cortex/metabolism , Rats , Sleep/drug effects , Sleep/physiology , Sleep Initiation and Maintenance Disorders/physiopathology , Wakefulness/drug effects , gamma-Aminobutyric Acid/pharmacology
8.
Sleep ; 40(6)2017 06 01.
Article in English | MEDLINE | ID: mdl-28419375

ABSTRACT

Study objective: To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Methods: Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. Results: There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Conclusions: Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined.


Subject(s)
Basal Forebrain/cytology , Cholinergic Neurons/metabolism , Gene Expression Profiling , Sleep Deprivation/metabolism , Sleep/genetics , Wakefulness/genetics , Acetylcholine/metabolism , Animals , CLOCK Proteins/genetics , Choline O-Acetyltransferase/genetics , Male , Mice , Protein Folding , Receptors, Metabotropic Glutamate/genetics , Sleep Deprivation/pathology
9.
Bioorg Med Chem Lett ; 27(6): 1364-1370, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28216403

ABSTRACT

In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OX2R subtype and culminating in the discovery of 23, a highly potent, OX2R-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OX1R antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed.


Subject(s)
Orexin Receptor Antagonists/pharmacology , Orexins/antagonists & inhibitors , Animals , Electroencephalography , Electromyography , Molecular Structure , Orexin Receptor Antagonists/chemistry , Rats
10.
Annu Rev Pharmacol Toxicol ; 57: 509-533, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27860547

ABSTRACT

Historically, pharmacological therapies have used mechanisms such as γ-aminobutyric acid A (GABAA) receptor potentiation to drive sleep through broad suppression of central nervous system activity. With the discovery of orexin signaling loss as the etiology underlying narcolepsy, a disorder associated with hypersomnolence, orexin antagonism emerged as an alternative approach to attenuate orexin-induced wakefulness more selectively. Dual orexin receptor antagonists (DORAs) block the activity of orexin 1 and 2 receptors to both reduce the threshold to transition into sleep and attenuate orexin-mediated arousal. Among DORAs evaluated clinically, suvorexant has pharmacokinetic properties engineered for a plasma half-life appropriate for rapid sleep onset and maintenance at low to moderate doses. Unlike GABAA receptor modulators, DORAs promote both non-rapid eye movement (NREM) and REM sleep, do not disrupt sleep stage-specific quantitative electroencephalogram spectral profiles, and allow somnolence indistinct from normal sleep. The preservation of cognitive performance and the ability to arouse to salient stimuli after DORA administration suggest further advantages over historical therapies.


Subject(s)
Azepines/therapeutic use , Drug Discovery/methods , Orexin Receptor Antagonists/therapeutic use , Orexin Receptors/physiology , Sleep Aids, Pharmaceutical/therapeutic use , Sleep Initiation and Maintenance Disorders/drug therapy , Triazoles/therapeutic use , Animals , Azepines/chemistry , Azepines/pharmacology , Drug Discovery/trends , Humans , Orexin Receptor Antagonists/chemistry , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/chemistry , Protein Structure, Secondary , Sleep Aids, Pharmaceutical/chemistry , Sleep Aids, Pharmaceutical/pharmacology , Sleep Initiation and Maintenance Disorders/metabolism , Triazoles/chemistry , Triazoles/pharmacology
11.
Bioorg Med Chem Lett ; 26(23): 5809-5814, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27818110

ABSTRACT

While a correlation between blockade of the orexin 2 receptor (OX2R) with either a dual orexin receptor antagonist (DORA) or a selective orexin 2 receptor antagonist (2-SORA) and a decrease of wakefulness is well established, less is known about selective blockade of the orexin 1 receptor (OX1R). Therefore, a highly selective orexin 1 antagonist (1-SORA) with suitable properties to allow in vivo interrogation of OX1R specific pharmacology in preclinical species remains an attractive target. Herein, we describe the discovery of an optimized 1-SORA series in the piperidine ether class. Notably, a 4,4-difluoropiperidine core coupled with a 2-quinoline ether linkage provides OX1R selective compounds. The combination with an azabenzimidazole or imidazopyridine amide substituent leads to analogs 47 and 51 with >625-fold functional selectivity for OX1R over OX2R in rat. Compounds 47 and 51 possess clean off-target profiles and the required pharmacokinetic and physical properties to be useful as 1-SORA tool compounds.


Subject(s)
Orexin Receptor Antagonists/chemistry , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/metabolism , Piperidines/chemistry , Piperidines/pharmacology , Animals , Drug Discovery , Humans , Piperidines/pharmacokinetics , Rats , Rats, Transgenic , Structure-Activity Relationship
13.
J Neurogenet ; 30(1): 32-41, 2016 03.
Article in English | MEDLINE | ID: mdl-27276194

ABSTRACT

Orexin signaling, known to modulate arousal and vigilance, is also involved in nociception as orexin neurons project to regions of the brain and spinal cord involved in pain processing, and the administration of orexin peptides can alter pain response in a wide range of preclinical models. Pharmacological treatment with the potent, selective and structurally distinct dual orexin receptor antagonists (ORAs) DORA-12 and DORA-2 significantly reduced pain responses during both phases I and II of the mouse formalin pain model and significantly reversed hyperalgesia in the rat complete Freund's adjuvant pain model, respectively. Significant antinociceptive effects of DORA-12 in the formalin model were also observed in orexin 1 receptor (OX1R) knockout mice, but not orexin 2 receptor (OX2R) or OX1R/OX2R double knockout mice. Mechanical hypersensitivity was significantly reduced with a series of structurally distinct, potent and highly selective ORAs (DORA-2, DORA-12 and DORA-22) in the rat spinal nerve ligation (SNL) injury model of neuropathic pain. Selective pharmacological targeting of OX2R with 2-SORA-7 also reduced pain responses in acute inflammatory (complete Freund's adjuvant) and neuropathic (SNL) rat pain models. Performance on the rotarod test of psychomotor performance and baseline thermal sensitivity were not affected in OX1R/OX2R knockout mice or ORA-treated mice, indicating that the observed pain-reducing effects were not due to sedation or motor deficits. These findings indicate that ORAs have pain-reducing effects across a number of acute and chronic neuropathic preclinical mouse and rat pain models. Further studies on the potential pain-relieving effects of orexin receptor antagonism are warranted.


Subject(s)
Analgesics/pharmacology , Orexin Receptor Antagonists/pharmacology , Animals , Disease Models, Animal , Hyperalgesia/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuralgia/physiopathology , Rats , Rats, Sprague-Dawley
14.
Sci Rep ; 6: 27147, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27256922

ABSTRACT

Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism.


Subject(s)
Orexin Receptor Antagonists/administration & dosage , Orexin Receptors/metabolism , Sleep Aids, Pharmaceutical/administration & dosage , Sleep Stages/drug effects , Animals , Dogs , Dose-Response Relationship, Drug , Female , Humans , Male , Mice , Orexin Receptor Antagonists/pharmacology , Polysomnography , Rats , Sleep Aids, Pharmaceutical/pharmacology , Sleep, REM/drug effects
15.
Sleep ; 39(3): 603-12, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26943466

ABSTRACT

STUDY OBJECTIVES: In addition to enhancing sleep onset and maintenance, a desirable insomnia therapeutic agent would preserve healthy sleep's ability to wake and respond to salient situations while maintaining sleep during irrelevant noise. Dual orexin receptor antagonists (DORAs) promote sleep by selectively inhibiting wake-promoting neuropeptide signaling, unlike global inhibition of central nervous system excitation by gamma-aminobutyric acid (GABA)-A receptor (GABAaR) modulators. We evaluated the effect of DORA versus GABAaR modulators on underlying sleep architecture, ability to waken to emotionally relevant stimuli versus neutral auditory cues, and performance on a sleepiness-sensitive cognitive task upon awakening. METHODS: DORA-22 and GABAaR modulators (eszopiclone, diazepam) were evaluated in adult male rhesus monkeys (n = 34) with continuous polysomnography recordings in crossover studies of sleep architecture, arousability to a classically conditioned salient versus neutral acoustical stimulus, and psychomotor vigilance task (PVT) performance if awakened. RESULTS: All compounds decreased wakefulness, but only DORA-22 sleep resembled unmedicated sleep in terms of underlying sleep architecture, preserved ability to awaken to salient-conditioned acoustic stimuli while maintaining sleep during neutral acoustic stimuli, and no congnitive impairment in PVT performance. Although GABAaR modulators induced lighter sleep, monkeys rarely woke to salient stimuli and PVT performance was impaired if monkeys were awakened. CONCLUSIONS: In nonhuman primates, DORAs' targeted mechanism for promoting sleep protects the ability to selectively arouse to salient stimuli and perform attentional tasks unimpaired, suggesting meaningful differentiation between a hypnotic agent that works through antagonizing orexin wake signaling versus the sedative hypnotic effects of the GABAaR modulator mechanism of action.


Subject(s)
Macaca mulatta/physiology , Orexin Receptor Antagonists/pharmacology , Orexins/metabolism , Signal Transduction/drug effects , Sleep/drug effects , Sleep/physiology , Wakefulness/drug effects , Wakefulness/physiology , Animals , Arousal/drug effects , Conditioning, Classical , Cross-Over Studies , Diazepam/pharmacology , Eszopiclone/pharmacology , GABA Agents/pharmacology , Hypnotics and Sedatives/pharmacology , Male , Piperidines/pharmacology , Polysomnography , Sleep Stages/drug effects , Sleep Stages/physiology , Triazoles/pharmacology
16.
Nat Struct Mol Biol ; 23(4): 293-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26950369

ABSTRACT

The orexin (also known as hypocretin) G protein-coupled receptors (GPCRs) regulate sleep and other behavioral functions in mammals, and are therapeutic targets for sleep and wake disorders. The human receptors hOX1R and hOX2R, which are 64% identical in sequence, have overlapping but distinct physiological functions and potential therapeutic profiles. We determined structures of hOX1R bound to the OX1R-selective antagonist SB-674042 and the dual antagonist suvorexant at 2.8-Å and 2.75-Å resolution, respectively, and used molecular modeling to illuminate mechanisms of antagonist subtype selectivity between hOX1R and hOX2R. The hOX1R structures also reveal a conserved amphipathic α-helix, in the extracellular N-terminal region, that interacts with orexin-A and is essential for high-potency neuropeptide activation at both receptors. The orexin-receptor crystal structures are valuable tools for the design and development of selective orexin-receptor antagonists and agonists.


Subject(s)
Azepines/pharmacology , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/chemistry , Orexin Receptors/metabolism , Pyrrolidines/pharmacology , Thiazoles/pharmacology , Triazoles/pharmacology , Crystallography, X-Ray , Humans , Ligands , Models, Molecular , Protein Binding , Protein Conformation
17.
Depress Anxiety ; 32(9): 671-83, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26332431

ABSTRACT

BACKGROUND: The neuropeptides orexin A and B play a role in reward and feeding and are critical for arousal. However, it was not initially appreciated that most prepro-orexin synthesizing neurons are almost exclusively concentrated in the perifornical hypothalamus, which when stimulated elicits panic-associated behavior and cardiovascular responses in rodents and self-reported "panic attacks" and "fear of dying" in humans. More recent studies support a role for the orexin system in coordinating an integrative stress response. For instance, orexin neurons are highly reactive to anxiogenic stimuli, are hyperactive in anxiety pathology, and have strong projections to anxiety and panic-associated circuitry. Although the two cognate orexin receptors are colocalized in many brain regions, the orexin 2 receptor (OX2R) most robustly maps to the histaminergic wake-promoting region, while the orexin 1 receptor (OX1R) distribution is more exclusive and dense in anxiety and panic circuitry regions, such as the locus ceruleus. Overall, this suggests that OX1Rs play a critical role in mobilizing anxiety and panic responses. METHODS: Here, we used a CO2 -panic provocation model to screen a dual OX1/2R antagonist (DORA-12) to globally inhibit orexin activity, then a highly selective OX1R antagonist (SORA1, Compound 56) or OX2R antagonist (SORA2, JnJ10397049) to assess OX1R and OX2R involvement. RESULTS: All compounds except the SORA2 attenuated CO2 -induced anxiety-like behaviors, and all but the SORA2 and DORA attenuated CO2 -induced cardiovascular responses. CONCLUSIONS: SORA1s may represent a novel method of treating anxiety disorders, with no apparent sedative effects that were present with a benzodiazepine.


Subject(s)
Autonomic Nervous System/physiopathology , Brain/metabolism , Neurons , Orexin Receptors/metabolism , Panic Disorder/metabolism , Panic Disorder/psychology , Anxiety/metabolism , Anxiety/physiopathology , Anxiety/psychology , Arousal , Carbon Dioxide , Cardiovascular System/drug effects , Humans , Neurons/metabolism , Panic , Panic Disorder/chemically induced , Panic Disorder/physiopathology , Reward
18.
Bioorg Med Chem Lett ; 25(12): 2488-92, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25981685

ABSTRACT

Antagonism of orexin receptors has shown clinical efficacy as a novel paradigm for the treatment of insomnia and related disorders. Herein, molecules related to the dual orexin receptor antagonist filorexant were transformed into compounds that were selective for the OX2R subtype. Judicious selection of the substituents on the pyridine ring and benzamide groups led to 6b; which was highly potent, OX2R selective, and exhibited excellent development properties.


Subject(s)
Orexin Receptor Antagonists/chemistry , Orexin Receptors/chemistry , Piperidines/chemistry , Triazoles/chemistry , Animals , Dogs , Half-Life , Mice , Orexin Receptor Antagonists/pharmacokinetics , Orexin Receptor Antagonists/therapeutic use , Orexin Receptors/metabolism , Piperidines/pharmacokinetics , Piperidines/therapeutic use , Protein Binding , Pyrimidines/chemistry , Rats , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep Initiation and Maintenance Disorders/veterinary , Structure-Activity Relationship , Triazoles/pharmacokinetics , Triazoles/therapeutic use
19.
Bioorg Med Chem Lett ; 25(3): 444-50, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25577040

ABSTRACT

Highly selective orexin receptor antagonists (SORAs) of the orexin 2 receptor (OX2R) have become attractive targets both as potential therapeutics for insomnia as well as biological tools to help further elucidate the underlying pharmacology of the orexin signaling pathway. Herein, we describe the discovery of a novel piperidine ether 2-SORA class identified by systematic lead optimization beginning with filorexant, a dual orexin receptor antagonist (DORA) that recently completed Phase 2 clinical trials. Changes to the ether linkage and pendant heterocycle of filorexant were found to impart significant selectivity for OX2R, culminating in lead compound PE-6. PE-6 displays sub-nanomolar binding affinity and functional potency on OX2R while maintaining >1600-fold binding selectivity and >200-fold functional selectivity versus the orexin 1 receptor (OX1R). PE-6 bears a clean off-target profile, a good overall preclinical pharmacokinetic (PK) profile, and reduces wakefulness with increased NREM and REM sleep when evaluated in vivo in a rat sleep study. Importantly, subtle structural changes to the piperidine ether class impart dramatic changes in receptor selectivity. To this end, our laboratories have identified multiple piperidine ether 2-SORAs, 1-SORAs, and DORAs, providing access to a number of important biological tool compounds from a single structural class.


Subject(s)
Ethers/chemistry , Orexin Receptor Antagonists , Piperidines/chemistry , Pyrimidines/chemistry , Animals , Dogs , Drug Evaluation, Preclinical , Ethers/chemical synthesis , Ethers/pharmacokinetics , Half-Life , Humans , Orexin Receptors/metabolism , Piperidines/metabolism , Protein Binding , Pyrimidines/metabolism , Rats , Sleep/drug effects , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 25(21): 4992-4999, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25613676

ABSTRACT

Dual orexin receptor antagonists (DORAs), or orexin 1 (OX1) and orexin 2 (OX2) receptor antagonists, have demonstrated clinical utility for the treatment of insomnia. Medicinal chemistry efforts focused on the reduction of bioactivation potential of diazepane amide 1 through the modification of the Western heterocycle resulted in the discovery of suvorexant, a DORA recently approved by the FDA for the treatment of insomnia. A second strategy towards reducing bioactivation risk is presented herein through the exploration of monocyclic quinazoline isosteres, namely substituted pyrimidines. These studies afforded potent DORAs with significantly reduced bioactivation risk and efficacy in rodent sleep models. Surprisingly, side products from the chemistry used to produce these DORAs yielded isomeric pyrimidine-containing diazepane amides possessing selective OX2R antagonist (2-SORA) profiles. Additional exploration of these isomeric pyrimidines uncovered potent 2-SORA diazepane amides with sleep efficacy in mouse EEG studies.


Subject(s)
Drug Discovery , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/metabolism , Pyrimidines/pharmacology , Quinazolines/pharmacology , Sleep Initiation and Maintenance Disorders/drug therapy , Animals , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Humans , Mice , Microsomes, Liver/drug effects , Models, Molecular , Molecular Structure , Orexin Receptor Antagonists/chemical synthesis , Orexin Receptor Antagonists/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Quinazolines/chemical synthesis , Quinazolines/chemistry , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...