Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38803236

ABSTRACT

Neutrophils can be beneficial or deleterious during tuberculosis (TB). Based on the expression of MHC-II and programmed death ligand 1 (PD-L1), we distinguished two functionally and transcriptionally distinct neutrophil subsets in the lungs of mice infected with mycobacteria. Inflammatory [MHC-II-, PD-L1lo] neutrophils produced inflammasome-dependent IL-1ß in the lungs in response to virulent mycobacteria and "accelerated" deleterious inflammation, which was highly exacerbated in IFN-γR-/- mice. Regulatory [MHC-II+, PD-L1hi] neutrophils "brake" inflammation by suppressing T-cell proliferation and IFN-γ production. Such beneficial regulation, which depends on PD-L1, is controlled by IFN-γR signaling in neutrophils. The hypervirulent HN878 strain from the Beijing genotype curbed PD-L1 expression by regulatory neutrophils, abolishing the braking function and driving deleterious hyperinflammation in the lungs. These findings add a layer of complexity to the roles played by neutrophils in TB and may explain the reactivation of this disease observed in cancer patients treated with anti-PD-L1.


Subject(s)
B7-H1 Antigen , Inflammation , Interleukin-1beta , Lung , Neutrophils , Tuberculosis , Animals , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Neutrophils/immunology , Neutrophils/metabolism , Mice , Interleukin-1beta/metabolism , Inflammation/immunology , Inflammation/metabolism , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/metabolism , Lung/immunology , Lung/microbiology , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis/immunology , Disease Models, Animal , Female , Humans
2.
J Dairy Sci ; 106(6): 4245-4256, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37080786

ABSTRACT

Bovine mastitis is mainly caused by bacterial infection and is responsible for important economic losses as well as alterations of the health and welfare of animals. The increase in somatic cell count (SCC) in milk during mastitis is mainly due to the influx of neutrophils, which have a crucial role in the elimination of pathogens. For a long time, these first-line defenders have been viewed as microbe killers, with a limited role in the orchestration of the immune response. However, their role is more complex: we recently characterized a bovine neutrophil subset expressing major histocompatibility complex class II (MHC-II) molecules (MHC-IIpos), usually distributed on antigen-presenting cells, as having regulatory capacities in cattle. In this study, our objective was to evaluate the implication of different neutrophils subsets in the mammary gland immunity during clinical and subclinical mastitis. Using flow cytometry, we analyzed the presence of MHC-IIpos neutrophils in blood and in milk during clinical mastitis at different time points of inflammation (n = 10 infected quarters) and during subclinical mastitis, defined as the presence of bacteria and an SCC >150,000 cells/mL (n = 27 infected quarters). Our results show, for the first time, that in blood and milk, neutrophils are a heterogeneous population and encompass at least 2 subsets distinguishable by their expression of MHC-II. In milk without mastitis, we observed higher production of reactive oxygen species and higher phagocytosis capacity of MHC-IIpos neutrophils compared with their MHC-IIneg counterparts, indicating the high bactericidal capacities of MHC-IIpos neutrophils. MHC-IIpos neutrophils are enriched in milk compared with blood during subclinical mastitis but not during clinical mastitis. Moreover, we observed a positive and highly significant correlation between MHC-IIpos neutrophils and T lymphocytes present in milk during subclinical mastitis. Our experiments involved a total of 47 cows (40 Holstein and 7 Normande cows). To conclude, our study opens the way to the discovery of new biomarkers of mastitis inflammation.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Animals , Cattle , Female , Neutrophils , Milk/microbiology , Mastitis, Bovine/microbiology , Inflammation/veterinary , Major Histocompatibility Complex , Cell Count/veterinary , Mammary Glands, Animal/microbiology
3.
Vet Immunol Immunopathol ; 256: 110536, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36586390

ABSTRACT

A growing appreciation is emerging of the beneficial role of vitamin D for health and resistance against infectious diseases, including tuberculosis. However, research has predominantly focused on murine and human species and functional data in bovines is limited. Therefore, the objective of this study was to assess the microbicidal activity and immunoregulatory effect of the vitamin D metabolite 1,25(OH)2D3 on bovine peripheral blood leukocytes (PBL) in response to Mycobacterium bovis BCG (BCG) infection using a combination of functional assays and gene expression profiling. Blood from Holstein-Friesian bull calves with low circulating levels of 25(OH)D was stimulated with 1,25(OH)2D3 for 2 h, and then infected with M. bovis BCG. Results showed that 1,25(OH)2D3 supplementation significantly increased BCG killing by on average 16 %, although responses varied between 1 % and 38 % killing. Serial cell subset depletion was then performed on PBL prior to 1,25(OH)2D3 incubation and BCG infected as before to analyse the contribution of major cell types to mycobacterial growth control. Specific antibodies and either magnetic cell separation or density gradient centrifugation of monocytes, granulocytes, CD3+, CD4+, and CD8+ T lymphocytes were used to capture each cell subset. Results showed that depletion of granulocytes had the greatest impact on BCG growth, leading to a significant enhancement of bacterial colonies. In contrast, depletion of CD4+ or CD8+ T cells individually, or in combination (CD3+), had no impact on mycobacterial growth control. In agreement with our previous data, 1,25(OH)2D3 significantly increased bacterial killing in PBL, in monocyte depleted samples, and a similar trend was observed in the granulocyte depleted subset. In addition, specific analysis of sorted neutrophils treated with 1,25(OH)2D3 showed an enhanced microbicidal activity against both BCG and a virulent strain of M. bovis. Lastly, data showed that 1,25(OH)2D3 stimulation increased reactive oxygen species (ROS) production and the expression of genes encoding host defence peptides (HDP) and pathogen recognition receptors (PRRs), factors that play an important role in the microbicidal activity against mycobacteria. In conclusion, the vitamin D metabolite 1,25(OH)2D3 improves antimycobacterial killing in bovine PBLs via the synergistic activity of monocytes and granulocytes and enhanced activation of innate immunity.


Subject(s)
Cattle Diseases , Mycobacterium bovis , Tuberculosis , Animals , Cattle , Male , BCG Vaccine , CD8-Positive T-Lymphocytes , Tuberculosis/veterinary , Vitamin D/pharmacology , Vitamins
4.
PLoS Pathog ; 18(7): e1010305, 2022 07.
Article in English | MEDLINE | ID: mdl-35849616

ABSTRACT

Multiple regulated neutrophil cell death programs contribute to host defense against infections. However, despite expressing all necessary inflammasome components, neutrophils are thought to be generally defective in Caspase-1-dependent pyroptosis. By screening different bacterial species, we found that several Pseudomonas aeruginosa (P. aeruginosa) strains trigger Caspase-1-dependent pyroptosis in human and murine neutrophils. Notably, deletion of Exotoxins U or S in P. aeruginosa enhanced neutrophil death to Caspase-1-dependent pyroptosis, suggesting that these exotoxins interfere with this pathway. Mechanistically, P. aeruginosa Flagellin activates the NLRC4 inflammasome, which supports Caspase-1-driven interleukin (IL)-1ß secretion and Gasdermin D (GSDMD)-dependent neutrophil pyroptosis. Furthermore, P. aeruginosa-induced GSDMD activation triggers Calcium-dependent and Peptidyl Arginine Deaminase-4-driven histone citrullination and translocation of neutrophil DNA into the cell cytosol without inducing extracellular Neutrophil Extracellular Traps. Finally, we show that neutrophil Caspase-1 contributes to IL-1ß production and susceptibility to pyroptosis-inducing P. aeruginosa strains in vivo. Overall, we demonstrate that neutrophils are not universally resistant for Caspase-1-dependent pyroptosis.


Subject(s)
Inflammasomes , Pyroptosis , Animals , Apoptosis Regulatory Proteins/genetics , Caspase 1/metabolism , Exotoxins/metabolism , Humans , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/microbiology , Pseudomonas aeruginosa/metabolism
5.
Cells ; 11(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35406754

ABSTRACT

The NLRP3 inflammasome is a cytosolic multimeric protein platform that leads to the activation of the protease zymogen, caspase-1 (CASP1). Inflammasome activation mediates the proteolytic activation of pro-inflammatory cytokines (IL-1ß and IL-18) and program cell death called pyroptosis. The pyroptosis is mediated by the protein executioner Gasdermin D (GSDMD), which forms pores at the plasma membrane to facilitate IL-1ß/IL-18 secretion and causes pyroptosis. The NLRP3 inflammasome is activated in response to a large number of pathogenic and sterile insults. However, an uncontrolled inflammasome activation may drive inflammation-associated diseases. Initially, inflammasome-competent cells were believed to be limited to macrophages, dendritic cells (DC), and monocytes. However, emerging evidence indicates that neutrophils can assemble inflammasomes in response to various stimuli with functional relevance. Interestingly, the regulation of inflammasome in neutrophils appears to be unconventional. This review provides a broad overview of the role and regulation of inflammasomes-and more specifically NLRP3-in neutrophils.


Subject(s)
Communicable Diseases , Inflammasomes , Humans , Inflammasomes/metabolism , Interleukin-18 , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neutrophils/metabolism
6.
Front Vet Sci ; 8: 696525, 2021.
Article in English | MEDLINE | ID: mdl-34307535

ABSTRACT

Tuberculosis exacts a terrible toll on human and animal health. While Mycobacterium tuberculosis (Mtb) is restricted to humans, Mycobacterium bovis (Mb) is present in a large range of mammalian hosts. In cattle, bovine TB (bTB) is a noticeable disease responsible for important economic losses in developed countries and underestimated zoonosis in the developing world. Early interactions that take place between mycobacteria and the lung tissue early after aerosol infection govern the outcome of the disease. In cattle, these early steps remain poorly characterized. The precision-cut lung slice (PCLS) model preserves the structure and cell diversity of the lung. We developed this model in cattle in order to study the early lung response to mycobacterial infection. In situ imaging of PCLS infected with fluorescent Mb revealed bacilli in the alveolar compartment, in adjacent or inside alveolar macrophages, and in close contact with pneumocytes. We analyzed the global transcriptional lung inflammation signature following infection of PCLS with Mb and Mtb in two French beef breeds: Blonde d'Aquitaine and Charolaise. Whereas, lungs from the Blonde d'Aquitaine produced high levels of mediators of neutrophil and monocyte recruitment in response to infection, such signatures were not observed in the Charolaise in our study. In the Blonde d'Aquitaine lung, whereas the inflammatory response was highly induced by two Mb strains, AF2122 isolated from cattle in the UK and Mb3601 circulating in France, the response against two Mtb strains, H37Rv, the reference laboratory strain, and BTB1558, isolated from zebu in Ethiopia, was very low. Strikingly, the type I interferon pathway was only induced by Mb but not Mtb strains, indicating that this pathway may be involved in mycobacterial virulence and host tropism. Hence, the PCLS model in cattle is a valuable tool to deepen our understanding of early interactions between lung host cells and mycobacteria. It revealed striking differences between cattle breeds and mycobacterial strains. This model could help in deciphering biomarkers of resistance vs. susceptibility to bTB in cattle as such information is still critically needed for bovine genetic selection programs and would greatly help the global effort to eradicate bTB.

7.
Front Immunol ; 12: 625244, 2021.
Article in English | MEDLINE | ID: mdl-33717136

ABSTRACT

Neutrophils that reside in the bone marrow are swiftly recruited from circulating blood to fight infections. For a long time, these first line defenders were considered as microbe killers. However their role is far more complex as cross talk with T cells or dendritic cells have been described for human or mouse neutrophils. In cattle, these new roles are not documented yet. We identified a new subset of regulatory neutrophils that is present in the mouse bone marrow or circulate in cattle blood under steady state conditions. These regulatory neutrophils that display MHC-II on the surface are morphologically indistinguishable from classical MHC-IIneg neutrophils. However MHC-IIpos and MHC-IIneg neutrophils display distinct transcriptomic profiles. While MHC-IIneg and MHC-IIpos neutrophils display similar bacterial phagocytosis or killing activity, MHC-IIpos only are able to suppress T cell proliferation under contact-dependent mechanisms. Regulatory neutrophils are highly enriched in lymphoid organs as compared to their MHC-IIneg counterparts and in the mouse they express PDL-1, an immune checkpoint involved in T-cell blockade. Our results emphasize neutrophils as true partners of the adaptive immune response, including in domestic species. They open the way for discovery of new biomarkers and therapeutic interventions to better control cattle diseases.


Subject(s)
Histocompatibility Antigens Class II/immunology , Neutrophils/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cattle , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phagocytosis
8.
Methods Mol Biol ; 2236: 203-217, 2021.
Article in English | MEDLINE | ID: mdl-33237550

ABSTRACT

Flow cytometry and magnetic bead technology enable the separation of cell populations with the highest degree of purity. Here, we describe protocols to sort bovine neutrophils from blood, the labeling and sorting, including gating strategies. We also provide advice to preserve neutrophil viability and detail a protocol to measure phagocytosis and oxidative species production.


Subject(s)
Cell Separation/methods , Flow Cytometry/methods , Magnetic Phenomena , Neutrophils/cytology , Animals , Cattle , Fluorescence , Luminescent Measurements , Phagocytosis , Reactive Oxygen Species/metabolism , Staining and Labeling
9.
J Cyst Fibros ; 19(3): 466-475, 2020 05.
Article in English | MEDLINE | ID: mdl-31787573

ABSTRACT

BACKGROUND: The lack of cystic fibrosis transmembrane conductance regulator (CFTR) function causes cystic fibrosis (CF), predisposing to severe lung disease, reduced growth and osteopenia. Both reduced bone content and strength are increasingly recognized in infants with CF before the onset of significant lung disease, suggesting a developmental origin and a possible role in bone disease pathogenesis. The role of CFTR in bone metabolism is unclear and studies on humans are not feasible. Deletion of CFTR in pigs (CFTR -/- pigs) displays at birth severe malformations similar to humans in the intestine, respiratory tract, pancreas, liver, and male reproductive tract. METHODS: We compared bone parameters of CFTR -/- male and female pigs with those of their wild-type (WT) littermates at birth. Morphological and microstructural properties of femoral cortical and trabecular bone were evaluated using micro-computed tomography (µCT), and their chemical compositions were examined using Raman microspectroscopy. RESULTS: The integrity of the CFTR -/- bone was altered due to changes in its microstructure and chemical composition in both sexes. Low cortical thickness and high cortical porosity were found in CFTR -/- pigs compared to sex-matched WT littermates. Moreover, an increased chemical composition heterogeneity associated with higher carbonate/phosphate ratio and higher mineral crystallinity was found in CFTR -/- trabecular bone, but not in CFTR -/- cortical bone. CONCLUSIONS: The loss of CFTR directly alters the bone composition and metabolism of newborn pigs. Based on these findings, we speculate that bone defects in patients with CF could be a primary, rather than a secondary consequence of inflammation and infection.


Subject(s)
Bone Density , Cancellous Bone , Cortical Bone , Cystic Fibrosis , Femur/diagnostic imaging , Animals , Animals, Newborn , Cancellous Bone/diagnostic imaging , Cancellous Bone/metabolism , Cortical Bone/diagnostic imaging , Cortical Bone/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Spectrum Analysis, Raman/methods , Swine , X-Ray Microtomography/methods
10.
Front Immunol ; 10: 417, 2019.
Article in English | MEDLINE | ID: mdl-30915076

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is one of the most prevalent lung infections of humans and kills ~1.7 million people each year. TB pathophysiology is complex with a central role played by granuloma where a delicate balance takes place to both constrain bacilli and prevent excessive inflammation that may destroy lung functions. Neutrophils reach the lung in waves following first encounter with bacilli and contribute both to early Mtb elimination and late deleterious inflammation. The hypoxic milieu where cells and bacilli cohabit inside the granuloma favors metabolism changes and the impact on TB infection needs to be more thoroughly understood. At the cellular level while the key role of the alveolar macrophage has long been established, behavior of neutrophils in the hypoxic granuloma remains poorly explored. This review will bring to the front new questions that are now emerging regarding neutrophils activity in TB. Are different neutrophil subsets involved in Mtb infection and how? How do neutrophils and close relatives contribute to shaping the granuloma immune environment? What is the role of hypoxia and hypoxia induced factors inside granuloma on neutrophil fate and functions and TB pathophysiology? Addressing these questions is key to the development of innovative host-directed therapies to fight TB.


Subject(s)
Cell Hypoxia/immunology , Granuloma, Respiratory Tract/immunology , Granuloma, Respiratory Tract/microbiology , Mycobacterium tuberculosis/immunology , Neutrophils/immunology , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/immunology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Host-Pathogen Interactions/immunology , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Molecular Targeted Therapy/methods , Prevalence , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology
11.
Front Immunol ; 10: 2913, 2019.
Article in English | MEDLINE | ID: mdl-31921172

ABSTRACT

Mycobacterium leprae, the causative agent of leprosy, is unique amongst human pathogens in its capacity to produce the virulence factor phenolic glycolipid (PGL)-I. In addition to mediating bacterial tropism for neurons, PGL-I interacts with Complement Receptor (CR)3 on macrophages (MPs) to promote infection. We demonstrate here that PGL-I binding to CR3 also enhances bacterial invasion of both polymorphonuclear neutrophils (PMNs) and dendritic cells (DCs). Moreover, in all cell types CR3 engagement by PGL-I activates the Syk tyrosine kinase, inducing calcineurin-dependent nuclear translocation of the transcription factor NFATc. This selectively augments the production of IL-2 by DCs, IL-10 by PMNs and IL-1ß by MPs. In intranasally-infected mice PGL-I binding to CR3 heightens mycobacterial phagocytosis by lung PMNs and MPs, and stimulates NFATc-controlled production of Syk-dependent cytokines. Our study thus identifies the CR3-Syk-NFATc axis as a novel signaling pathway activated by PGL-I in innate immune cells, rewiring host cytokine responses to M. leprae.


Subject(s)
Antigens, Bacterial/immunology , Calcineurin/immunology , Glycolipids/immunology , Immunity, Innate , Leprosy/immunology , Macrophage-1 Antigen/immunology , Mycobacterium leprae/immunology , NFATC Transcription Factors/immunology , Signal Transduction/immunology , Syk Kinase/immunology , Animals , Calcineurin/genetics , Cytokines/genetics , Cytokines/immunology , Dendritic Cells/immunology , Leprosy/genetics , Macrophage-1 Antigen/genetics , Male , Mice , Mice, Knockout , NFATC Transcription Factors/genetics , Neutrophils/immunology , Phagocytosis , Signal Transduction/genetics , Syk Kinase/genetics
12.
Front Immunol ; 9: 2, 2018.
Article in English | MEDLINE | ID: mdl-29403489

ABSTRACT

Phenolic glycolipids (PGLs) are cell wall components of a subset of pathogenic mycobacteria, with immunomodulatory properties. Here, we show that in addition, PGLs exert antibactericidal activity by limiting the production of nitric oxide synthase (iNOS) in mycobacteria-infected macrophages. PGL-mediated downregulation of iNOS was complement receptor 3-dependent and comparably induced by bacterial and purified PGLs. Using Mycobacterium leprae PGL-1 as a model, we found that PGLs dampen the toll-like receptor (TLR)4 signaling pathway, with macrophage exposure to PGLs leading to significant reduction in TIR-domain-containing adapter-inducing interferon-ß (TRIF) protein level. PGL-driven decrease in TRIF operated posttranscriptionally and independently of Src-family tyrosine kinases, lysosomal and proteasomal degradation. It resulted in the defective production of TRIF-dependent IFN-ß and CXCL10 in TLR4-stimulated macrophages, in addition to iNOS. Our results unravel a mechanism by which PGLs hijack both the bactericidal and inflammatory responses of host macrophages. Moreover, they identify TRIF as a critical node in the crosstalk between CR3 and TLR4.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Antigens, Bacterial/metabolism , Glycolipids/metabolism , Macrophages/immunology , Mycobacterium leprae/immunology , Nitric Oxide Synthase Type II/biosynthesis , Toll-Like Receptor 4/metabolism , Animals , Cell Wall/metabolism , Cells, Cultured , Chemokine CXCL10/biosynthesis , Interferon-beta/biosynthesis , Leprosy/immunology , Leprosy/microbiology , Leprosy/pathology , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
13.
Sci Rep ; 8(1): 894, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343690

ABSTRACT

The Mycobacterium tuberculosis complex (MTBC) is the collective term given to the group of bacteria that cause tuberculosis (TB) in mammals. It has been reported that M. tuberculosis H37Rv, a standard reference MTBC strain, is attenuated in cattle compared to Mycobacterium bovis. However, as M. tuberculosis H37Rv was isolated in the early 1930s, and genetic variants are known to exist, we sought to revisit this question of attenuation of M. tuberculosis for cattle by performing a bovine experimental infection with a recent M. tuberculosis isolate. Here we report infection of cattle using M. bovis AF2122/97, M. tuberculosis H37Rv, and M. tuberculosis BTB1558, the latter isolated in 2008 during a TB surveillance project in Ethiopian cattle. We show that both M. tuberculosis strains caused reduced gross pathology and histopathology in cattle compared to M. bovis. Using M. tuberculosis H37Rv and M. bovis AF2122/97 as the extremes in terms of infection outcome, we used RNA-Seq analysis to explore differences in the peripheral response to infection as a route to identify biomarkers of progressive disease in contrast to a more quiescent, latent infection. Our work shows the attenuation of M. tuberculosis strains for cattle, and emphasizes the potential of the bovine model as a 'One Health' approach to inform human TB biomarker development and post-exposure vaccine development.


Subject(s)
Bacillus/immunology , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis, Bovine/immunology , Tuberculosis/immunology , Animals , Biomarkers/metabolism , Cattle , Female , Humans , Tuberculosis/metabolism , Tuberculosis/microbiology , Tuberculosis, Bovine/metabolism , Tuberculosis, Bovine/microbiology
14.
Vet Res ; 48(1): 73, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29116026

ABSTRACT

Achieving the control of bovine tuberculosis (bTB) would require the discovery of an efficient combined immunodiagnostic and vaccine strategy. Since in vivo experiments on cattle are not ethically and economically acceptable there is a need for a cost-effective animal model capable of reproducing, as closely as possible, the physiopathology of bTB to (i) better characterize the cellular and molecular features of bTB immunopathogenesis and (ii) screen preclinical vaccine candidates. To develop such a model, we focused on the C3HeB/FeJ Kramnik's mouse forming hypoxic, encapsulated granulomas with a caseous necrotic center following Mycobacterium tuberculosis infection. Our work represents the first investigation on C3HeB/FeJ interaction with M. bovis, the main agent of bTB. Detailed histopathological analysis of C3HeB/FeJ lung lesions development following aerogenous M. bovis infection unraveled a bimodal evolution of the pathology. The C3HeB/FeJ recapitulated all the hallmarks of classical bovine lung granulomas but also developed, to some extend, lethal necrotic large lesions characterized by high mycobacterial and neutrophil load, and an inefficient collagen-driven lesion encapsulation. Interestingly these rapidly invasive pneumonia lesions, occurring in a constant percentage of the mice, shared all features with some exacerbated lung lesions that we and others have observed in lungs of cattle naturally or experimentally infected with M. bovis. Together, our findings demonstrate the relevance of the C3HeB/FeJ mouse as a comprehensive model to study bTB immunopathology that could be used for further vaccine therapies in the future.


Subject(s)
Lung/pathology , Mycobacterium bovis/physiology , Tuberculosis, Bovine/pathology , Animals , Cattle , Disease Models, Animal , Granuloma/microbiology , Granuloma/pathology , Lung/microbiology , Mice , Mice, Inbred Strains , Tuberculosis, Bovine/microbiology , Tuberculosis, Bovine/physiopathology
15.
Sci Rep ; 7(1): 2109, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28522873

ABSTRACT

In order to develop an improved BCG vaccine against tuberculosis we have taken advantage of the adjuvant properties of a non-toxic derivative of Escherichia coli heat labile enterotoxin (LT), LTAK63. We have constructed rBCG strains expressing LTAK63 at different expression levels. Mice immunized with BCG expressing low levels of LTAK63 (rBCG-LTAK63lo) showed higher Th1 cytokines and IL-17 in the lungs, and when challenged intratracheally with Mycobacterium tuberculosis displayed a 2.0-3.0 log reduction in CFU as compared to wild type BCG. Histopathological analysis of lung tissues from protected mice revealed a reduced inflammatory response. Immunization with rBCG-LTAK63lo also protected against a 100-fold higher challenge dose. Mice immunized with rBCG-LTAK63lo produced an increase in TGF-ß as compared with BCG after challenge, with a corresponding reduction in Th1 and Th17 cytokines, as determined by Real Time RT-PCR. Furthermore, rBCG-LTAK63lo also displays protection against challenge with a highly virulent Beijing isolate. Our findings suggest that BCG with low-level expression of the LTAK63 adjuvant induces a stronger immune response in the lungs conferring higher levels of protection, and a novel mechanism subsequently triggers a regulatory immune response, which then limits the pathology. The rBCG-LTAK63lo strain can be the basis of an improved vaccine against tuberculosis.


Subject(s)
BCG Vaccine/immunology , Endotoxins/immunology , Tuberculosis/immunology , Vaccines, Synthetic/immunology , Adjuvants, Immunologic/genetics , Animals , BCG Vaccine/genetics , Cells, Cultured , Endotoxins/genetics , Lung/immunology , Mice , Mycobacterium tuberculosis/immunology , Spleen/immunology , Vaccines, Synthetic/genetics
16.
Scientific Reports ; 7(1): 2109-2017. graf, ilus
Article in English | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1067909

ABSTRACT

In order to develop an improved BCG vaccine against tuberculosis we have taken advantage of the adjuvant properties of a non-toxic derivative of Escherichia coli heat labile enterotoxin (LT), LTAK63. We have constructed rBCG strains expressing LTAK63 at different expression levels. Mice immunized with BCG expressing low levels of LTAK63 (rBCG-LTAK63lo) showed higher Th1 cytokines and IL-17 in the lungs, and when challenged intratracheally with Mycobacterium tuberculosis displayed a 2.0–3.0 log reduction in CFU as compared to wild type BCG. Histopathological analysis of lung tissues from protected mice revealed a reduced inflammatory response. Immunization with rBCG-LTAK63lo also protected against a 100-fold higher challenge dose. Mice immunized with rBCG-LTAK63lo produced an increase in TGF-β as compared with BCG after challenge, with a corresponding reduction in Th1 and Th17 cytokines, as determined by Real Time RT-PCR. Furthermore, rBCG-LTAK63lo also displays protection against challenge with a highly virulent Beijing isolate. Our findings suggest that BCG with low-level expression of the LTAK63 adjuvant induces a stronger immune response in the lungs conferring higher levels of protection, and a novel mechanism subsequently triggers a regulatory immune response, which then limits the pathology. The rBCG-LTAK63lo strain can be the basis of an improved vaccine against tuberculosis.


Subject(s)
BCG Vaccine , Tuberculosis Vaccines
17.
Sci. Rep. ; 7: 2109, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15200

ABSTRACT

In order to develop an improved BCG vaccine against tuberculosis we have taken advantage of the adjuvant properties of a non-toxic derivative of Escherichia coli heat labile enterotoxin (LT), LTAK63. We have constructed rBCG strains expressing LTAK63 at different expression levels. Mice immunized with BCG expressing low levels of LTAK63 (rBCG-LTAK63(lo)) showed higher Th1 cytokines and IL-17 in the lungs, and when challenged intratracheally with Mycobacterium tuberculosis displayed a 2.0-3.0 log reduction in CFU as compared to wild type BCG. Histopathological analysis of lung tissues from protected mice revealed a reduced inflammatory response. Immunization with rBCG-LTAK63(lo) also protected against a 100-fold higher challenge dose. Mice immunized with rBCG-LTAK63(lo) produced an increase in TGF-beta as compared with BCG after challenge, with a corresponding reduction in Th1 and Th17 cytokines, as determined by Real Time RT-PCR. Furthermore, rBCG-LTAK63(lo) also displays protection against challenge with a highly virulent Beijing isolate. Our findings suggest that BCG with low-level expression of the LTAK63 adjuvant induces a stronger immune response in the lungs conferring higher levels of protection, and a novel mechanism subsequently triggers a regulatory immune response, which then limits the pathology. The rBCG-LTAK63(lo) strain can be the basis of an improved vaccine against tuberculosis.

18.
Vaccine ; 34(23): 2608-15, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27060378

ABSTRACT

Defining the function and protective capacity of mycobacterial antigens is crucial for progression of tuberculosis (TB) vaccine candidates to clinical trials. The Ag85B protein is expressed by all pathogenic mycobacteria and is a component of multiple TB vaccines under evaluation in humans. In this report we examined the role of the BCG Ag85B protein in host cell interaction and vaccine-induced protection against virulent Mycobacterium tuberculosis infection. Ag85B was required for macrophage infection in vitro, as BCG deficient in Ag85B expression (BCG:(Δ85B)) was less able to infect RAW 264.7 macrophages compared to parental BCG, while an Ag85B-overexpressing BCG strain (BCG:(oex85B)) demonstrated improved uptake. A similar pattern was observed in vivo after intradermal delivery to mice, with significantly less BCG:(Δ85B) present in CD64(hi)CD11b(hi) macrophages compared to BCG or BCG:(oex85B). After vaccination of mice with BCG:(Δ85B) or parental BCG and subsequent aerosol M. tuberculosis challenge, similar numbers of activated CD4(+) and CD8(+) T cells were detected in the lungs of infected mice for both groups, suggesting the reduced macrophage uptake observed by BCG:(Δ85B) did not alter host immunity. Further, vaccination with both BCG:(Δ85B) and parental BCG resulted in a comparable reduction in pulmonary M. tuberculosis load. These data reveal an unappreciated role for Ag85B in the interaction of mycobacteria with host cells and indicates that single protective antigens are dispensable for protective immunity induced by BCG.


Subject(s)
Acyltransferases/immunology , Antigens, Bacterial/immunology , BCG Vaccine/immunology , Bacterial Proteins/immunology , Macrophages/immunology , Tuberculosis/prevention & control , Adoptive Transfer , Aerosols , Animals , Female , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mycobacterium tuberculosis , RAW 264.7 Cells
19.
PLoS One ; 11(2): e0149455, 2016.
Article in English | MEDLINE | ID: mdl-26871571

ABSTRACT

During chronic infection with Mycobacterium tuberculosis (Mtb), bacilli multiplication is constrained within lung granulomas until excessive inflammation destroys the lung. Neutrophils are recruited early and participate in granuloma formation, but excessive neutrophilia exacerbates the tuberculosis disease. Neutrophils thus appear as potential targets for therapeutic interventions, especially in patients for whom no antibiotic treatment is possible. Signals that regulate neutrophil recruitment to the lung during mycobacterial infection need to be better understood. We demonstrated here, in the mouse model, that neutrophils were recruited to the lung in two waves after intranasal infection with virulent Mtb or the live attenuated vaccine strain Bacillus Calmette Guérin (BCG). A first wave of neutrophils was swiftly recruited, followed by a subsequent adaptive wave that reached the lung together with IFN-γ- and IL-17A-producing T cells. Interestingly, the second neutrophil wave did not participate to mycobacteria control in the lung and established contacts with T cells. The adaptive wave was critically dependent on the expression of IL-17RA, the receptor for IL-17A, expressed in non-hematopoietic cells. In absence of this receptor, curtailed CXCL-1 and 5 production in the lung restrained neutrophil recruitment. CXCL-1 and 5 instillation reconstituted lung neutrophil recruitment in BCG-infected IL17RA-/- mice.


Subject(s)
BCG Vaccine/immunology , Chemokine CXCL1/immunology , Chemokine CXCL5/immunology , Mycobacterium tuberculosis/immunology , Neutrophil Infiltration , Receptors, Interleukin-17/immunology , Tuberculosis, Pulmonary/immunology , Animals , Humans , Lung/cytology , Lung/immunology , Lung/microbiology , Male , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/microbiology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/prevention & control
20.
J Immunol ; 196(2): 803-12, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26685206

ABSTRACT

The cytokine IL-17A has been shown to play critical roles in host defense against bacterial and fungal infections at different epithelial sites, but its role in the defense of the mammary gland (MG) has seldom been investigated, although infections of the MG constitute the main pathology afflicting dairy cows. In this study, we showed that IL-17A contributes to the defense of the MG against Escherichia coli infection by using a mouse mastitis model. After inoculation of the MG with a mastitis-causing E. coli strain, the bacterial load increased rapidly, triggering an intense influx of leukocytes into mammary tissue and increased concentrations of IL-6, IL-22, TNF-α, and IL-10. Neutrophils were the first cells that migrated intensely to the mammary tissue, in line with an early production of CXCL2. Depletion of neutrophils induced an increased mammary bacterial load. There was a significant increase of IL-17-containing CD4(+) αß T lymphocyte numbers in infected glands. Depletion of IL-17A correlated with an increased bacterial colonization and IL-10 production. Intramammary infusion of IL-17A at the onset of infection was associated with markedly decreased bacterial numbers, decreased IL-10 production, and increased neutrophil recruitment. Depletion of CD25(+) regulatory T cells correlated with a decreased production of IL-10 and a reduced bacterial load. These results indicate that IL-17A is an important effector of MG immunity to E. coli and suggest that an early increased local production of IL-17A would improve the outcome of infection. These findings point to a new lead to the development of vaccines against mastitis.


Subject(s)
Escherichia coli Infections/immunology , Interleukin-17/immunology , Mastitis/immunology , Animals , Cytokines/analysis , Cytokines/biosynthesis , Cytokines/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Escherichia coli , Female , Flow Cytometry , Immunohistochemistry , Mammary Glands, Animal/immunology , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...