Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 8(5): e1002735, 2012 May.
Article in English | MEDLINE | ID: mdl-22693453

ABSTRACT

Accumulating evidence suggests that breast cancer metastatic progression is modified by germline polymorphism, although specific modifier genes have remained largely undefined. In the current study, we employ the MMTV-PyMT transgenic mouse model and the AKXD panel of recombinant inbred mice to identify AT-rich interactive domain 4B (Arid4b; NM_194262) as a breast cancer progression modifier gene. Ectopic expression of Arid4b promoted primary tumor growth in vivo as well as increased migration and invasion in vitro, and the phenotype was associated with polymorphisms identified between the AKR/J and DBA/2J alleles as predicted by our genetic analyses. Stable shRNA-mediated knockdown of Arid4b caused a significant reduction in pulmonary metastases, validating a role for Arid4b as a metastasis modifier gene. ARID4B physically interacts with the breast cancer metastasis suppressor BRMS1, and we detected differential binding of the Arid4b alleles to histone deacetylase complex members mSIN3A and mSDS3, suggesting that the mechanism of Arid4b action likely involves interactions with chromatin modifying complexes. Downregulation of the conserved Tpx2 gene network, which is comprised of many factors regulating cell cycle and mitotic spindle biology, was observed concomitant with loss of metastatic efficiency in Arid4b knockdown cells. Consistent with our genetic analysis and in vivo experiments in our mouse model system, ARID4B expression was also an independent predictor of distant metastasis-free survival in breast cancer patients with ER+ tumors. These studies support a causative role of ARID4B in metastatic progression of breast cancer.


Subject(s)
Cell Movement/genetics , DNA-Binding Proteins/genetics , Mammary Neoplasms, Animal/genetics , Repressor Proteins/genetics , Alleles , Animals , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HEK293 Cells , Humans , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Mice , Microtubule-Associated Proteins/metabolism , Neoplasm Metastasis , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Signal Transduction/genetics , Sin3 Histone Deacetylase and Corepressor Complex
2.
J Mammary Gland Biol Neoplasia ; 13(3): 337-42, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18661105

ABSTRACT

Tumorigenesis and metastasis are complex multistep processes. In addition to the numerous somatic mutations that facilitate cancer progression, there is abundant evidence that an individual's genetic background not only contributes to overall cancer risk, but also specifically influences metastatic potential. The handful of human susceptibility genes that have been identified thus far do not fully account for hereditary cancer risk, and the discovery of additional susceptibility loci using population based studies is complex, time-consuming and expensive. Therefore, we and others have used a variety of mouse models to identify novel candidate susceptibility genes. Here we review how these mouse models have contributed to our understanding of the role of genetic background in modifying tumorigenesis and metastasis susceptibility.


Subject(s)
Breast Neoplasms/genetics , Mammary Neoplasms, Experimental/genetics , Animals , Disease Progression , Extracellular Matrix/metabolism , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , Mice , Models, Genetic , Neoplasm Metastasis , Polymorphism, Genetic , Quantitative Trait Loci , Risk
3.
Cancer Res ; 67(6): 2830-9, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17363606

ABSTRACT

We report the first application of high-frequency three-dimensional power Doppler ultrasound imaging in a genetically engineered mouse (GEM) prostate cancer model. We show that the technology sensitively and specifically depicts functional neoangiogenic blood flow because little or no flow is measurable in normal prostate tissue or tumors smaller than 2-3 mm diameter, the neoangiogenesis "switch-on" size. Vascular structures depicted by power Doppler were verified using Microfil-enhanced micro-computed tomography (micro-CT) and by correlation with microvessel distributions measured by immunohistochemistry and enhanced vascularity visualized by confocal microscopy in two GEM models [transgenic adenocarcinoma of the mouse prostate (TRAMP) and PSP94 gene-directed transgenic mouse adenocarcinoma of the prostate (PSP-TGMAP)]. Four distinct phases of neoangiogenesis in cancer development were observed, specifically, (a) an early latent phase; (b) establishment of a peripheral capsular vascular structure as a neoangiogenesis initiation site; (c) a peak in tumor vascularity that occurs before aggressive tumor growth; and (d) rapid tumor growth accompanied by decreasing vascularity. Microsurgical interventions mimicking local delivery of antiangiogenesis drugs were done by ligating arteries upstream from feeder vessels branching to the prostate. Microsurgery produced an immediate reduction of tumor blood flow, and flow remained low from 1 h to 2 weeks or longer after treatment. Power Doppler, in conjunction with micro-CT, showed that the tumors recruit secondary blood supplies from nearby vessels, which likely accounts for the continued growth of the tumors after surgery. The microsurgical model represents an advanced angiogenic prostate cancer stage in GEM mice corresponding to clinically defined hormone-refractory prostate cancer. Three-dimensional power Doppler imaging is completely noninvasive and will facilitate basic and preclinical research on neoangiogenesis in live animal models.


Subject(s)
Adenocarcinoma/blood supply , Adenocarcinoma/diagnostic imaging , Prostatic Neoplasms/blood supply , Prostatic Neoplasms/diagnostic imaging , Ultrasonography, Doppler/methods , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Cell Growth Processes/physiology , Disease Models, Animal , Genetic Engineering , Image Processing, Computer-Assisted/methods , Male , Mice , Mice, Transgenic , Neovascularization, Pathologic/diagnostic imaging , Neovascularization, Pathologic/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology
4.
Prostate ; 67(1): 83-106, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17013881

ABSTRACT

BACKGROUND: A major focus of prostate cancer research has been to identify genes that are deregulated during tumor progression, potentially providing diagnostic markers and therapeutic targets. METHODS: We have employed serial analysis of gene expression (SAGE) and microarray hybridization to identify alterations that occur during malignant transformation in the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model. Many of these alterations were validated by real-time PCR (rtPCR). RESULTS: We identified several hundred mRNAs that were deregulated. Cluster analysis of microarray profiles with samples from various stages of the disease demonstrated that androgen-independent (AI) primary tumors are similar to metastases; 180 transcripts have expression patterns suggesting an involvement in the genesis of late-stage tumors, and our data support a role for phospholipase A2 group IIA in the acquisition of their highly aggressive characteristics. CONCLUSIONS: Our analyses identified well-characterized genes that were previously known to be involved in prostate cancer, validating our study, and also uncovered transcripts that had not previously been implicated in prostate cancer progression.


Subject(s)
Adenocarcinoma/genetics , Androgens/genetics , Disease Models, Animal , Gene Expression Profiling , Genes, Neoplasm/physiology , Genetic Engineering/methods , Oligonucleotide Array Sequence Analysis , Prostatic Neoplasms/genetics , Adenocarcinoma/metabolism , Androgens/metabolism , Animals , Gene Expression Regulation, Neoplastic/physiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Prostatic Neoplasms/metabolism , Species Specificity
5.
J Cell Biochem ; 91(4): 671-83, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-14991759

ABSTRACT

The growth, development, and differentiation of the prostate gland is largely dependent on the action of androgens and peptide growth factors that act differentially at the level of the mesenchymal and epithelial compartments. It is our premise that to understand the emergence of metastatic and hormone refractory prostate cancer we need to investigate: (1) how androgen action at the level of the mesenchyme induces the production of peptide growth factors that in turn can facilitate the growth and development of the epithelial compartment; (2) how androgen action at the level of the epithelium induces and maintains cellular differentiation, function, and replicative senescence; and (3) how transformation of the prostate gland can corrupt androgen and growth factor signaling homeostasis. To this end, we focus our discussion on how deregulation of the growth factor signaling axis can cooperate with deregulation of the androgen signaling axis to facilitate transformation, metastasis, and the emergence of the hormone refractory and neuroendocrine phenotypes associated with progressive androgen-independent prostate cancer. Finally, we suggest a working hypothesis to explain why hormone ablation therapy works to control early disease but fails to control, and may even facilitate, advanced prostate cancer.


Subject(s)
Gonadal Steroid Hormones/metabolism , Growth Substances/metabolism , Neurosecretory Systems/metabolism , Neurosecretory Systems/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Animals , Cell Transformation, Neoplastic , Disease Progression , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL