Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(5): 114220, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38735047

ABSTRACT

The suprachiasmatic nucleus (SCN) encodes time of day through changes in daily firing; however, the molecular mechanisms by which the SCN times behavior are not fully understood. To identify factors that could encode day/night differences in activity, we combine patch-clamp recordings and single-cell sequencing of individual SCN neurons in mice. We identify PiT2, a phosphate transporter, as being upregulated in a population of Vip+Nms+ SCN neurons at night. Although nocturnal and typically showing a peak of activity at lights off, mice lacking PiT2 (PiT2-/-) do not reach the activity level seen in wild-type mice during the light/dark transition. PiT2 loss leads to increased SCN neuronal firing and broad changes in SCN protein phosphorylation. PiT2-/- mice display a deficit in seasonal entrainment when moving from a simulated short summer to longer winter nights. This suggests that PiT2 is responsible for timing activity and is a driver of SCN plasticity allowing seasonal entrainment.


Subject(s)
Suprachiasmatic Nucleus , Animals , Suprachiasmatic Nucleus/metabolism , Mice , Neurons/metabolism , Locomotion , Mice, Inbred C57BL , Vasoactive Intestinal Peptide/metabolism , Male , Circadian Rhythm/physiology , Photoperiod , Mice, Knockout , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Phosphate Transport Proteins/metabolism , Phosphate Transport Proteins/genetics
2.
Front Cell Neurosci ; 17: 1188574, 2023.
Article in English | MEDLINE | ID: mdl-37213213

ABSTRACT

Information processing within neuronal circuits relies on their proper development and a balanced interplay between principal and local inhibitory interneurons within those circuits. Gamma-aminobutyric acid (GABA)ergic inhibitory interneurons are a remarkably heterogeneous population, comprising subclasses based on their morphological, electrophysiological, and molecular features, with differential connectivity and activity patterns. microRNA (miRNA)-dependent post-transcriptional control of gene expression represents an important regulatory mechanism for neuronal development and plasticity. miRNAs are a large group of small non-coding RNAs (21-24 nucleotides) acting as negative regulators of mRNA translation and stability. However, while miRNA-dependent gene regulation in principal neurons has been described heretofore in several studies, an understanding of the role of miRNAs in inhibitory interneurons is only beginning to emerge. Recent research demonstrated that miRNAs are differentially expressed in interneuron subclasses, are vitally important for migration, maturation, and survival of interneurons during embryonic development and are crucial for cognitive function and memory formation. In this review, we discuss recent progress in understanding miRNA-dependent regulation of gene expression in interneuron development and function. We aim to shed light onto mechanisms by which miRNAs in GABAergic interneurons contribute to sculpting neuronal circuits, and how their dysregulation may underlie the emergence of numerous neurodevelopmental and neuropsychiatric disorders.

3.
PNAS Nexus ; 2(4): pgad088, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37077887

ABSTRACT

Dentate granule cells (GCs) have been characterized as unilaterally projecting neurons within each hippocampus. Here, we describe a unique class, the commissural GCs, which atypically project to the contralateral hippocampus in mice. Although commissural GCs are rare in the healthy brain, their number and contralateral axon density rapidly increase in a rodent model of temporal lobe epilepsies. In this model, commissural GC axon growth appears together with the well-studied hippocampal mossy fiber sprouting and may be important for the pathomechanisms of epilepsy. Our results augment the current view on hippocampal GC diversity and demonstrate powerful activation of a commissural wiring program in the adult brain.

4.
Life Sci Alliance ; 5(12)2022 09 23.
Article in English | MEDLINE | ID: mdl-36150742

ABSTRACT

Homeostatic synaptic depression (HSD) in excitatory neurons is a cell-autonomous mechanism which protects excitatory neurons from over-excitation as a consequence of chronic increases in network activity. In this process, excitatory synapses are weakened and eventually eliminated, as evidenced by a reduction in synaptic AMPA receptor expression and dendritic spine loss. Originally considered a global, cell-wide mechanism, local forms of regulation, such as the local control of mRNA translation in dendrites, are being increasingly recognized in HSD. Yet, identification of excitatory proteins whose local regulation is required for HSD is still limited. Here, we show that proline-rich protein 7/transmembrane adapter protein 3 (Prr7) down-regulation in dendrites of rat hippocampal neurons is necessary for HSD induced by chronic increase in network activity resulting from a blockade of inhibitory synaptic transmission by picrotoxin (PTX). We further identify two activity-regulated miRNAs, miR-329-3p and miR-495-3p, which inhibit Prr7 mRNA translation and are required for HSD. Moreover, we found that Prr7 knockdown reduces expression of the synaptic scaffolding protein SPAR, which is rescued by pharmacological inhibition of CDK5, indicating a role of Prr7 protein in the maintenance of excitatory synapses via protection of SPAR from degradation. Together, our findings highlight a novel HSD mechanism in which chronic activity leads to miR-329- and miR-495-mediated Prr7 reduction upstream of the CDK5-SPAR pathway.


Subject(s)
Long-Term Synaptic Depression , Membrane Proteins , MicroRNAs , Nerve Tissue Proteins , Neurons , Animals , Down-Regulation , Hippocampus/cytology , Membrane Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Nerve Tissue Proteins/genetics , Neurons/metabolism , Picrotoxin/pharmacology , Rats , Receptors, AMPA/metabolism
5.
EMBO Rep ; 23(10): e54420, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35969184

ABSTRACT

Bipolar disorder (BD) is a chronic mood disorder characterized by manic and depressive episodes. Dysregulation of neuroplasticity and calcium homeostasis are frequently observed in BD patients, but the underlying molecular mechanisms are largely unknown. Here, we show that miR-499-5p regulates dendritogenesis and cognitive function by downregulating the BD risk gene CACNB2. miR-499-5p expression is increased in peripheral blood of BD patients, as well as in the hippocampus of rats which underwent juvenile social isolation. In rat hippocampal neurons, miR-499-5p impairs dendritogenesis and reduces surface expression and activity of the L-type calcium channel Cav1.2. We further identified CACNB2, which encodes a regulatory ß-subunit of Cav1.2, as a direct functional target of miR-499-5p in neurons. miR-499-5p overexpression in the hippocampus in vivo induces short-term memory impairments selectively in rats haploinsufficient for the Cav1.2 pore forming subunit Cacna1c. In humans, miR-499-5p expression is negatively associated with gray matter volumes of the left superior temporal gyrus, a region implicated in auditory and emotional processing. We propose that stress-induced miR-499-5p overexpression contributes to dendritic impairments, deregulated calcium homeostasis, and neurocognitive dysfunction in BD.


Subject(s)
Bipolar Disorder , Calcium Channels, L-Type , MicroRNAs , Animals , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Calcium/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Hippocampus/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neuronal Plasticity/genetics , Rats
6.
eNeuro ; 9(2)2022.
Article in English | MEDLINE | ID: mdl-35437266

ABSTRACT

Cortical GABAergic interneurons have been shown to fulfil important roles by inhibiting excitatory principal neurons. Recent transcriptomic studies have confirmed seminal discoveries that used anatomic and electrophysiological methods highlighting the existence of multiple different classes of GABAergic interneurons. Although some of these studies have emphasized that inter-regional differences may exist for a given class, the extent of such differences remains unknown. To address this problem, we used single-cell Patch-RNAseq to characterize neuropeptide Y (NPY)-positive GABAergic interneurons in superficial layers of the primary auditory cortex (AC) and in distal layers of area CA3 in mice. We found that more than 300 genes are differentially expressed in NPY-positive neurons between these two brain regions. For example, the AMPA receptor (AMPAR) auxiliary subunit Shisa9/CKAMP44 and the 5HT2a receptor (5HT2aR) are significantly higher expressed in auditory NPY-positive neurons. These findings guided us to perform pharmacological experiments that revealed a role for 5HT2aRs in auditory NPY-positive neurons. Specifically, although the application of 5HT led to a depolarization of both auditory and CA3 NPY-positive neurons, the 5HT2aR antagonist ketanserin only reversed membrane potential changes in auditory NPY-positive neurons. Our study demonstrates the potential of single-cell transcriptomic studies in guiding directed pharmacological experiments.


Subject(s)
Neocortex , Neuropeptide Y , Animals , Hippocampus/metabolism , Interneurons/physiology , Mice , Neocortex/metabolism , Neurons/metabolism , Neuropeptide Y/metabolism
7.
Elife ; 112022 03 15.
Article in English | MEDLINE | ID: mdl-35290180

ABSTRACT

The proper development and function of neuronal circuits rely on a tightly regulated balance between excitatory and inhibitory (E/I) synaptic transmission, and disrupting this balance can cause neurodevelopmental disorders, for example, schizophrenia. MicroRNA-dependent gene regulation in pyramidal neurons is important for excitatory synaptic function and cognition, but its role in inhibitory interneurons is poorly understood. Here, we identify miR138-5p as a regulator of short-term memory and inhibitory synaptic transmission in the mouse hippocampus. Sponge-mediated miR138-5p inactivation specifically in mouse parvalbumin (PV)-expressing interneurons impairs spatial recognition memory and enhances GABAergic synaptic input onto pyramidal neurons. Cellular and behavioral phenotypes associated with miR138-5p inactivation are paralleled by an upregulation of the schizophrenia (SCZ)-associated Erbb4, which we validated as a direct miR138-5p target gene. Our findings suggest that miR138-5p is a critical regulator of PV interneuron function in mice, with implications for cognition and SCZ. More generally, they provide evidence that microRNAs orchestrate neural circuit development by fine-tuning both excitatory and inhibitory synaptic transmission.


Subject(s)
Memory, Short-Term , MicroRNAs , Animals , Hippocampus/physiology , Interneurons/physiology , Mice , MicroRNAs/genetics , Parvalbumins/metabolism
8.
J Innate Immun ; 14(4): 335-354, 2022.
Article in English | MEDLINE | ID: mdl-34864742

ABSTRACT

Multinucleated giant hemocytes (MGHs) represent a novel type of blood cell in insects that participate in a highly efficient immune response against parasitoid wasps involving isolation and killing of the parasite. Previously, we showed that circulating MGHs have high motility and the interaction with the parasitoid rapidly triggers encapsulation. However, structural and molecular mechanisms behind these processes remained elusive. Here, we used detailed ultrastructural analysis and live cell imaging of MGHs to study encapsulation in Drosophila ananassae after parasitoid wasp infection. We found dynamic structural changes, mainly driven by the formation of diverse vesicular systems and newly developed complex intracytoplasmic membrane structures, and abundant generation of giant cell exosomes in MGHs. In addition, we used RNA sequencing to study the transcriptomic profile of MGHs and activated plasmatocytes 72 h after infection, as well as the uninduced blood cells. This revealed that differentiation of MGHs was accompanied by broad changes in gene expression. Consistent with the observed structural changes, transcripts related to vesicular function, cytoskeletal organization, and adhesion were enriched in MGHs. In addition, several orphan genes encoding for hemolysin-like proteins, pore-forming toxins of prokaryotic origin, were expressed at high level, which may be important for parasitoid elimination. Our results reveal coordinated molecular and structural changes in the course of MGH differentiation and parasitoid encapsulation, providing a mechanistic model for a powerful innate immune response.


Subject(s)
Hemocytes , Wasps , Animals , Drosophila , Host-Parasite Interactions , Immunity, Innate , Transcriptome , Wasps/genetics
9.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34599103

ABSTRACT

Circuit formation in the central nervous system has been historically studied during development, after which cell-autonomous and nonautonomous wiring factors inactivate. In principle, balanced reactivation of such factors could enable further wiring in adults, but their relative contributions may be circuit dependent and are largely unknown. Here, we investigated hippocampal mossy fiber sprouting to gain insight into wiring mechanisms in mature circuits. We found that sole ectopic expression of Id2 in granule cells is capable of driving mossy fiber sprouting in healthy adult mouse and rat. Mice with the new mossy fiber circuit solved spatial problems equally well as controls but appeared to rely on local rather than global spatial cues. Our results demonstrate reprogrammed connectivity in mature neurons by one defined factor and an assembly of a new synaptic circuit in adult brain.


Subject(s)
Inhibitor of Differentiation Protein 2/genetics , Transcription, Genetic/genetics , Animals , Epilepsy, Temporal Lobe/genetics , Mice , Mossy Fibers, Hippocampal/physiology , Neurogenesis/genetics , Rats
10.
EMBO Rep ; 22(10): e52094, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34396684

ABSTRACT

Synaptic scaling is a form of homeostatic plasticity which allows neurons to adjust their action potential firing rate in response to chronic alterations in neural activity. Synaptic scaling requires profound changes in gene expression, but the relative contribution of local and cell-wide mechanisms is controversial. Here we perform a comprehensive multi-omics characterization of the somatic and process compartments of primary rat hippocampal neurons during synaptic scaling. We uncover both highly compartment-specific and correlating changes in the neuronal transcriptome and proteome. Whereas downregulation of crucial regulators of neuronal excitability occurs primarily in the somatic compartment, structural components of excitatory postsynapses are mostly downregulated in processes. Local inhibition of protein synthesis in processes during scaling is confirmed for candidate synaptic proteins. Motif analysis further suggests an important role for trans-acting post-transcriptional regulators, including RNA-binding proteins and microRNAs, in the local regulation of the corresponding mRNAs. Altogether, our study indicates that, during synaptic scaling, compartmentalized gene expression changes might co-exist with neuron-wide mechanisms to allow synaptic computation and homeostasis.


Subject(s)
Neuronal Plasticity , Synapses , Animals , Gene Expression , Gene Expression Regulation , Neuronal Plasticity/genetics , Neurons , Rats
11.
Neuron ; 108(3): 486-499.e5, 2020 11 11.
Article in English | MEDLINE | ID: mdl-32916091

ABSTRACT

Although the mammalian rest-activity cycle is controlled by a "master clock" in the suprachiasmatic nucleus (SCN) of the hypothalamus, it is unclear how firing of individual SCN neurons gates individual features of daily activity. Here, we demonstrate that a specific transcriptomically identified population of mouse VIP+ SCN neurons is active at the "wrong" time of day-nighttime-when most SCN neurons are silent. Using chemogenetic and optogenetic strategies, we show that these neurons and their cellular clocks are necessary and sufficient to gate and time nighttime sleep but have no effect upon daytime sleep. We propose that mouse nighttime sleep, analogous to the human siesta, is a "hard-wired" property gated by specific neurons of the master clock to favor subsequent alertness prior to dawn (a circadian "wake maintenance zone"). Thus, the SCN is not simply a 24-h metronome: specific populations sculpt critical features of the sleep-wake cycle.


Subject(s)
Circadian Rhythm/physiology , Suprachiasmatic Nucleus Neurons/physiology , Animals , Male , Mice , Sleep/physiology , Vasoactive Intestinal Peptide/metabolism
12.
Elife ; 92020 06 03.
Article in English | MEDLINE | ID: mdl-32490811

ABSTRACT

CCK-expressing interneurons (CCK+INs) are crucial for controlling hippocampal activity. We found two firing phenotypes of CCK+INs in rat hippocampal CA3 area; either possessing a previously undetected membrane potential-dependent firing or regular firing phenotype, due to different low-voltage-activated potassium currents. These different excitability properties destine the two types for distinct functions, because the former is essentially silenced during realistic 8-15 Hz oscillations. By contrast, the general intrinsic excitability, morphology and gene-profiles of the two types were surprisingly similar. Even the expression of Kv4.3 channels were comparable, despite evidences showing that Kv4.3-mediated currents underlie the distinct firing properties. Instead, the firing phenotypes were correlated with the presence of distinct isoforms of Kv4 auxiliary subunits (KChIP1 vs. KChIP4e and DPP6S). Our results reveal the underlying mechanisms of two previously unknown types of CCK+INs and demonstrate that alternative splicing of few genes, which may be viewed as a minor change in the cells' whole transcriptome, can determine cell-type identity.


Subject(s)
CA3 Region, Hippocampal/cytology , Cholecystokinin/metabolism , Interneurons , Shal Potassium Channels , Animals , Cells, Cultured , Interneurons/chemistry , Interneurons/classification , Interneurons/metabolism , Membrane Potentials/physiology , Phenotype , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Rats , Rats, Wistar , Shal Potassium Channels/chemistry , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism , Transcriptome/genetics
13.
Cell Stem Cell ; 27(1): 98-109.e11, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32386572

ABSTRACT

Altered neural stem/progenitor cell (NSPC) activity and neurodevelopmental defects are linked to intellectual disability. However, it remains unclear whether altered metabolism, a key regulator of NSPC activity, disrupts human neurogenesis and potentially contributes to cognitive defects. We investigated links between lipid metabolism and cognitive function in mice and human embryonic stem cells (hESCs) expressing mutant fatty acid synthase (FASN; R1819W), a metabolic regulator of rodent NSPC activity recently identified in humans with intellectual disability. Mice homozygous for the FASN R1812W variant have impaired adult hippocampal NSPC activity and cognitive defects because of lipid accumulation in NSPCs and subsequent lipogenic ER stress. Homozygous FASN R1819W hESC-derived NSPCs show reduced rates of proliferation in embryonic 2D cultures and 3D forebrain regionalized organoids, consistent with a developmental phenotype. These data from adult mouse models and in vitro models of human brain development suggest that altered lipid metabolism contributes to intellectual disability.


Subject(s)
Lipid Metabolism , Neural Stem Cells , Animals , Cell Proliferation , Fatty Acid Synthases , Hippocampus , Memory Disorders , Mice , Neurogenesis
14.
Neuron ; 104(5): 899-915.e8, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31672263

ABSTRACT

Chronic stress (CS) is a major risk factor for the development of depression. Here, we demonstrate that CS-induced hyperactivity in ventral tegmental area (VTA)-projecting lateral habenula (LHb) neurons is associated with increased passive coping (PC), but not anxiety or anhedonia. LHb→VTA neurons in mice with increased PC show increased burst and tonic firing as well as synaptic adaptations in excitatory inputs from the entopeduncular nucleus (EP). In vivo manipulations of EP→LHb or LHb→VTA neurons selectively alter PC and effort-related motivation. Conversely, dorsal raphe (DR)-projecting LHb neurons do not show CS-induced hyperactivity and are targeted indirectly by the EP. Using single-cell transcriptomics, we reveal a set of genes that can collectively serve as biomarkers to identify mice with increased PC and differentiate LHb→VTA from LHb→DR neurons. Together, we provide a set of biological markers at the level of genes, synapses, cells, and circuits that define a distinctive CS-induced behavioral phenotype.


Subject(s)
Habenula/physiopathology , Motivation/physiology , Neurons , Psychological Distress , Animals , Behavior, Animal , Depression/etiology , Depression/physiopathology , Male , Mice , Mice, Inbred C57BL , Phenotype
15.
Eur J Neurosci ; 50(11): 3750-3771, 2019 12.
Article in English | MEDLINE | ID: mdl-31420995

ABSTRACT

Inhibitory GABAergic interneurons create different brain activity patterns that correlate with behavioural states. In this characterizing study, we used single-cell RNA-Seq to analyse anatomically- and electrophysiologically identified hippocampal oriens-lacunosum moleculare (OLM) interneurons. OLMs express somatostatin (Sst), generate feedback inhibition and play important roles in theta oscillations and fear encoding. Although an anatomically- and biophysically homogenous population, OLMs presumably comprise of two functionally distinct types with different developmental origins, inferred from the expression pattern of serotonin type-3a (5-HT3a, or Htr3a) receptor subunit and 5-HT excitability in a set of OLMs. To broadly characterize OLM cells, we used the Sst-Cre and the BAC transgenic Htr3a-Cre mouse lines and separately analysed SstCre-OLM and Htr3aCre-OLM types. We found a surprisingly consistent expression of Npy in OLMs, which was previously not associated with the identity of this type. Our analyses furthermore revealed uniform expression of developmental origin-related genes, including transcription factors and neurexin isoforms, without providing support for the current view that OLMs may originate from multiple neurogenic zones. Together, we found that OLMs constitute a highly homogenous transcriptomic population. Finally, our results revealed surprisingly infrequent expression of Htr3a in only ~10% of OLMs and an apparently specific expression of the 5-HT3b subunit-coding gene Htr3b in Htr3aCre-OLMs, but not in SstCre-OLMs. However, additional in situ hybridization experiments suggested that the differential expression of Htr3b may represent an unexpected consequence arising from the design of the Htr3a-Cre BAC transgenic line.


Subject(s)
Hippocampus/cytology , Hippocampus/metabolism , Interneurons/metabolism , RNA-Seq/methods , Animals , Female , Hippocampus/chemistry , Interneurons/chemistry , Male , Mice , Mice, Transgenic , Organ Culture Techniques , Receptors, Serotonin, 5-HT3/biosynthesis , Receptors, Serotonin, 5-HT3/genetics , Transcriptome/physiology
16.
Cell Rep ; 27(13): 3752-3759.e4, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31242409

ABSTRACT

Neurexins are key synaptic organizers that are expressed in thousands of alternatively spliced isoforms. Because transsynaptic neurexin interactions with different postsynaptic molecules are largely isoform dependent, a cell type-level census of different neurexin isoforms could predict molecular interactions relating to synapse identity and function. Using single-cell transcriptomics to study the origin of neurexin diversity in multiple murine mature and embryonic cell types, we have discovered shared neurexin expression patterns in developmentally related cells. By comparing neurexin profiles in immature embryonic neurons, we show that neurexin profiles are specified during early development and remain unchanged throughout neuronal maturation. Thus, our findings reveal ontogenetic stability and provide a cell type-level census of neurexin isoform expression in the cortex.


Subject(s)
Alternative Splicing , Cerebral Cortex/metabolism , Neural Cell Adhesion Molecules , RNA-Seq , Single-Cell Analysis , Animals , Cerebral Cortex/cytology , Female , Male , Mice , Neural Cell Adhesion Molecules/biosynthesis , Neural Cell Adhesion Molecules/genetics , Optogenetics , Protein Stability
17.
Front Mol Neurosci ; 12: 115, 2019.
Article in English | MEDLINE | ID: mdl-31133800

ABSTRACT

GABAergic interneuron diversity is a key feature in the brain that helps to create different brain activity patterns and behavioral states. Cell type classification schemes-based on anatomical, physiological and molecular features-have provided us with a detailed understanding of the distinct types that constitute this diversity and their contribution to brain function. Over recent years, the utility of single-cell RNAseq has majorly complemented this existing framework, vastly expanding our knowledge base, particularly regarding molecular features. Single-cell gene-expression profiles of tens of thousands of GABAergic cells from many different types are now available. The analysis of these data has shed new lights onto previous classification principles and illuminates a path towards a deeper understanding of molecular hallmarks behind interneuron diversity. A large part of such molecular features is synapse-related. These include ion channels and receptors, as well as key synaptic organizers and trans-synaptic signaling molecules. Increasing evidence suggests that transcriptional and post-transcriptional modifications further diversify these molecules and generate cell type-specific features. Thus, unraveling the cell type-specific nature of gene-isoform expression will be a key in cell type classification. This review article discusses progress in the transcriptomic survey of interneurons and insights that have begun to manifest from isoform-level analyses.

18.
Cell Rep ; 19(6): 1110-1116, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28494861

ABSTRACT

The distinctive firing pattern of grid cells in the medial entorhinal cortex (MEC) supports its role in the representation of space. It is widely believed that the hexagonal firing field of grid cells emerges from neural dynamics that depend on the local microcircuitry. However, local networks within the MEC are still not sufficiently characterized. Here, applying up to eight simultaneous whole-cell recordings in acute brain slices, we demonstrate the existence of unitary excitatory connections between principal neurons in the superficial layers of the MEC. In particular, we find prevalent feed-forward excitation from pyramidal neurons in layer III and layer II onto stellate cells in layer II, which might contribute to the generation or the inheritance of grid cell patterns.


Subject(s)
Entorhinal Cortex/physiology , Excitatory Postsynaptic Potentials , Animals , Entorhinal Cortex/cytology , Female , Male , Nerve Net , Pyramidal Cells/physiology , Rats , Rats, Wistar
19.
J Neurosci ; 35(40): 13608-18, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26446215

ABSTRACT

Cortical and hippocampal oscillations play a crucial role in the encoding, consolidation, and retrieval of memory. Sharp-wave associated ripples have been shown to be necessary for the consolidation of memory. During consolidation, information is transferred from the hippocampus to the neocortex. One of the structures at the interface between hippocampus and neocortex is the subiculum. It is therefore well suited to mediate the transfer and distribution of information from the hippocampus to other areas. By juxtacellular and whole-cell-recordings in awake mice, we show here that in the subiculum a subset of pyramidal cells is activated, whereas another subset is inhibited during ripples. We demonstrate that these functionally different subgroups are predetermined by their cell subtype. Bursting cells are selectively used to transmit information during ripples, whereas the firing probability in regular firing cells is reduced. With multiple patch-clamp recordings in vitro, we show that the cell subtype-specific differences extend into the local network topology. This is reflected in an asymmetric wiring scheme where bursting cells and regular firing cells are recurrently connected among themselves but connections between subtypes exclusively exist from regular to bursting cells. Furthermore, inhibitory connections are more numerous onto regular firing cells than onto bursting cells. We conclude that the network topology contributes to the observed functional diversity of subicular pyramidal cells during sharp-wave associated ripples. SIGNIFICANCE STATEMENT: Memory consolidation is dependent on hippocampal activity patterns, so called hippocampal ripples. During these fast oscillations, memory traces are transferred from the hippocampus to the neocortex via the subiculum. We investigated the role of single cells in the subiculum during ripples and found that, dependent on their subtype, they are preferentially activated or inhibited. In addition, these two subtypes, the bursting and regular firing type, are differentially integrated into the local network: inhibitory cells are more densely connected to regular firing cells, and communication between regular and bursting cells is unidirectional. Together with earlier findings on different preferential target regions of these subtypes, we conclude that memory traces are guided to target regions of the activated cell type.


Subject(s)
Action Potentials/physiology , Hippocampus/cytology , Hippocampus/physiology , Pyramidal Cells/physiology , Age Factors , Animals , Electric Stimulation , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/physiology , Patch-Clamp Techniques , Statistics, Nonparametric
20.
J Neurosci ; 35(36): 12346-54, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26354904

ABSTRACT

Layer 3 of the medial entorhinal cortex is a major gateway from the neocortex to the hippocampus. Here we addressed structure-function relationships in medial entorhinal cortex layer 3 by combining anatomical analysis with juxtacellular identification of single neurons in freely behaving rats. Anatomically, layer 3 appears as a relatively homogeneous cell sheet. Dual-retrograde neuronal tracing experiments indicate a large overlap between layer 3 pyramidal populations, which project to ipsilateral hippocampus, and the contralateral medial entorhinal cortex. These cells were intermingled within layer 3, and had similar morphological and intrinsic electrophysiological properties. Dendritic trees of layer 3 neurons largely avoided the calbindin-positive patches in layer 2. Identification of layer 3 neurons during spatial exploration (n = 17) and extracellular recordings (n = 52) pointed to homogeneous spatial discharge patterns. Layer 3 neurons showed only weak spiking theta rhythmicity and sparse head-direction selectivity. A majority of cells (50 of 69) showed no significant spatial modulation. All of the ∼28% of neurons that carried significant amounts of spatial information (19 of 69) discharged in irregular spatial patterns. Thus, layer 3 spatiotemporal firing properties are remarkably different from those of layer 2, where theta rhythmicity is prominent and spatially modulated cells often discharge in grid or border patterns. Significance statement: Neurons within the superficial layers of the medial entorhinal cortex (MEC) often discharge in border, head-direction, and theta-modulated grid patterns. It is still largely unknown how defined discharge patterns relate to cellular diversity in the superficial layers of the MEC. In the present study, we addressed this issue by combining anatomical analysis with juxtacellular identification of single layer 3 neurons in freely behaving rats. We provide evidence that the anatomical organization and spatiotemporal firing properties of layer 3 neurons are remarkably different from those in layer 2. Specifically, most layer 3 neurons discharged in spatially irregular firing patterns, with weak theta-modulation and head-directional selectivity. This work thus poses constraints on the spatiotemporal patterns reaching downstream targets, like the hippocampus.


Subject(s)
Action Potentials , Entorhinal Cortex/physiology , Pyramidal Cells/physiology , Animals , Calbindins/genetics , Calbindins/metabolism , Entorhinal Cortex/cytology , Pyramidal Cells/metabolism , Rats , Rats, Wistar , Theta Rhythm
SELECTION OF CITATIONS
SEARCH DETAIL
...