Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 114(5): 1126-1136, 2024 May.
Article in English | MEDLINE | ID: mdl-38451582

ABSTRACT

Sugar beet (Beta vulgaris) is grown in temperate regions around the world as a source of sucrose used for natural sweetening. Sugar beet is susceptible to a number of viral diseases, but identification of the causal agent(s) under field conditions is often difficult due to mixtures of viruses that may be responsible for disease symptoms. In this study, the application of RNAseq to RNA extracted from diseased sugar beet roots obtained from the field and from greenhouse-reared plants grown in soil infested with the virus disease rhizomania (causal agent beet necrotic yellow vein virus; BNYVV) yielded genome-length sequences from BNYVV, as well as beet soil-borne virus (BSBV). The nucleotide identities of the derived consensus sequence of BSBV RNAs ranged from 99.4 to 96.7% (RNA1), 99.3 to 95.3% (RNA2), and 98.3 to 95.9% (RNA3) compared with published BSBV sequences. Based on the BSBV genome consensus sequence, clones of the genomic RNAs 1, 2, and 3 were obtained to produce RNA copies of the genome through in vitro transcription. Capped RNA produced from the clones was infectious when inoculated into leaves of Chenopodium quinoa and B. vulgaris, and extracts from transcript-infected C. quinoa leaves could infect sugar beet seedling roots through a vortex inoculation method. Subsequent exposure of these infected sugar beet seedling roots to aviruliferous Polymyxa betae, the protist vector of both BNYVV and BSBV, confirmed that BSBV derived from the infectious clones could be transmitted by the vector. Co-inoculation of BSBV synthetic transcripts with transcripts of a cloned putative satellite virus designated Beta vulgaris satellite virus 1A (BvSat1A) resulted in the production of lesions on leaves of C. quinoa similar to those produced by inoculation with BSBV alone. Nevertheless, accumulation of genomic RNA and the encoded protein of the satellite virus in co-inoculated leaves was readily detected on Northern and Western blots, respectively, whereas no accumulation of satellite virus products occurred when satellite virus RNA was inoculated alone. The predicted sequence of the detected protein encoded by BvSat1A bears hallmarks of coat proteins of other satellite viruses, and virions of a size consistent with a satellite virus were observed in samples testing positive for the virus. The results demonstrate that BSBV is a helper virus for the novel satellite virus BvSat1A.


Subject(s)
Beta vulgaris , Plant Diseases , Plant Viruses , Satellite Viruses , Beta vulgaris/virology , Plant Diseases/virology , Satellite Viruses/genetics , Satellite Viruses/physiology , Plant Viruses/genetics , Plant Viruses/physiology , Helper Viruses/genetics , Helper Viruses/physiology , RNA, Viral/genetics , Plant Roots/virology , Genome, Viral/genetics , Soil Microbiology
2.
Plant Dis ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414194

ABSTRACT

The increasing prevalence of whitefly-transmitted viruses affecting cucurbit crops has emerged as a significant concern for global cucurbit production. Two of the most widely prevalent threats in the Americas are cucurbit yellow stunting disorder virus (CYSDV) and cucurbit chlorotic yellows virus (CCYV) (Crinivirus, Closteroviridae). These viruses induce similar foliar symptoms on cucurbit crops (Mondal et al., 2023) leading to loss of photosynthetic capability and decreased yields. Cantaloupe (Cucumis melo), watermelon (Citrullus lanatus), and cucumber (Cucumis sativus) are major cucurbit crops in St. Elizabeth, Jamaica, which is the principal fruit and vegetable producing region of the country. In August 2018, foliar symptoms were observed on cantaloupe, watermelon, and cucumber plants in several commercial farms in St. Elizabeth. These symptoms, mainly on the older leaves, consisted of severe yellowing or interveinal mottle and they appeared more pronounced on cantaloupe and cucumber plants compared to watermelon. Growers noticed the production of smaller than normal fruit. Disease incidence ranged from 10 to 100% and whiteflies (Bemisia tabaci Gennadius) were observed in the fields. To identify virus(es) associated with the disease, six plants (cantaloupe [n = 3], cucumber [n = 1] and watermelon [n = 2) exhibiting symptoms were sampled from four fields for preliminary screening. Total RNA was extracted from leaf tissues as described in Tamang et al. (2021) and samples tested by a multiplex reverse transcription RT-PCR method that targeted the RNA-dependent RNA polymerase (RdRp) of the whitefly transmitted viruses, CYSDV, CCYV, squash vein yellowing virus (SqVYV), and the aphid- transmitted cucurbit aphid-borne yellows virus (CABYV) (Mondal et al. 2023). RT-PCR amplified the expected 494-bp fragment of the CYSDV RdRp gene (Mondal et al., 2023) from two symptomatic plants; one cantaloupe, one cucumber, as well as from CYSDV-infected control plants but not from healthy controls. Further testing was conducted during the June-August 2020 growing season after similar symptoms were observed on additional farms in St. Elizabeth and two regions, Manchester and Clarendon, located to the east of St. Elizabeth. Twenty-one cucurbit leaf samples (11 cantaloupe, seven watermelon and two cucumber from St. Elizabeth and one cantaloupe from Clarendon) exhibiting foliar yellowing progressing from the crown outward, and mottling were collected. Whiteflies (5) from these fields in St. Elizabeth and 20 asymptomatic weed samples were also collected and sent to the USDA-ARS laboratory at Salinas, CA. Total RNA from leaf samples was extracted as described above and tested for CYSDV, CCYV, and CABYV. Total leaf DNA was also extracted (Mondal et al. 2016) and assayed with PCR (Gilbertson 2001) to detect the presence of the whitefly-transmitted cucurbit leaf crumple virus (CuLCrV), a begomovirus, commonly found in the southeastern United States (Gadhave et al., 2018; Keinath et al., 2018). Nineteen of the 21 cucurbit samples tested positive for the presence of CYSDV by RT-PCR (Mondal et al. 2023). Of the 19 CYSDV-positive samples, 13 cantaloupe, one cucumber, and five watermelon samples were singly infected with CYSDV, and one cantaloupe sample was infected with both CYSDV and CABYV. Amplicons of the Jamaica isolate from cantaloupe were sequenced (OR399555) and a 494 nt section of the RdRp gene was found to share 100% sequence identity to the Arizona 1 isolate (EF547827.1). The presence of CYSDV, was further confirmed using a second set of primers that amplified a 394-nt portion of the CYSDV coat protein gene (Polston et al., 2008). Among the weed samples, CABYV was detected in one sample from a Leonotis nepetifolia plant (Lamiaceae) and two Cleome sp. (Capparaceae) collected from St. Elizabeth. None of the crop and weed samples tested positive for CCYV or CuLCrV. DNA from whiteflies was extracted and assayed with PCR using species specific primers (Chen et al. 2016). All whiteflies were identified as B. tabaci cryptic species MEAM1, which is widely known an efficient vector of CYSDV (Berdiales, et al. 1999). This is the first report of CYSDV in Jamaica and its first known occurrence in these hosts within the country. Further monitoring of cucurbit crops and the whitefly vector is warranted to better understand the epidemiology.

SELECTION OF CITATIONS
SEARCH DETAIL