Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Microbiol Spectr ; 12(4): e0414223, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38421191

ABSTRACT

In an effort to identify novel compounds with potent inhibition against Toxoplasma gondii, a phenotypic screen was performed utilizing a library of 683 pure compounds derived primarily from terrestrial and marine fungi. An initial screen with a fixed concentration of 5 µM yielded 91 hits with inhibition comparable to an equal concentration of artemisinin. These compounds were then triaged based on known biological and chemical concerns and liabilities. From these, 49 prioritized compounds were tested in a dose response format with T. gondii and human foreskin fibroblasts (HFFs) for cytotoxicity. Ten compounds were identified with an IC50 less than 150 nM and a selectivity index (SI) greater than 100. An additional eight compounds demonstrated submicromolar IC50 and SI values equal to or greater than 35. While the majority of these scaffolds have been previously implicated against apicomplexan parasites, their activities in T. gondii were largely unknown. Herein, we report the T. gondii activity of these compounds with chemotypes including xanthoquinodins, peptaibols, heptelidic acid analogs, and fumagillin analogs, with multiple compounds demonstrating exceptional potency in T. gondii and limited toxicity to HFFs at the highest concentrations tested. IMPORTANCE: Current therapeutics for treating toxoplasmosis remain insufficient, demonstrating high cytotoxicity, poor bioavailability, limited efficacy, and drug resistance. Additional research is needed to develop novel compounds with high efficacy and low cytotoxicity. The success of artemisinin and other natural products in treating malaria highlights the potential of natural products as anti-protozoan therapeutics. However, the exploration of natural products in T. gondii drug discovery has been less comprehensive, leaving untapped potential. By leveraging the resources available for the malaria drug discovery campaign, we conducted a phenotypic screen utilizing a set of natural products previously screened against Plasmodium falciparum. Our study revealed 18 compounds with high potency and low cytotoxicity in T. gondii, including four novel scaffolds with no previously reported activity in T. gondii. These new scaffolds may serve as starting points for the development of toxoplasmosis therapeutics but could also serve as tool compounds for target identification studies using chemogenomic approach.


Subject(s)
Antiprotozoal Agents , Artemisinins , Biological Products , Malaria , Toxoplasma , Toxoplasmosis , Humans , Antiprotozoal Agents/pharmacology , Biological Products/pharmacology , Artemisinins/pharmacology
2.
Nat Commun ; 15(1): 937, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297033

ABSTRACT

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.


Subject(s)
Antimalarials , Aspartate-tRNA Ligase , Animals , Humans , Plasmodium falciparum/genetics , Asparagine/metabolism , Aspartate-tRNA Ligase/genetics , RNA, Transfer, Amino Acyl/metabolism , Antimalarials/pharmacology , Mammals/genetics
3.
J Med Chem ; 67(2): 1460-1480, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38214254

ABSTRACT

While progress has been made in the effort to eradicate malaria, the disease remains a significant threat to global health. Acquired resistance to frontline treatments is emerging in Africa, urging a need for the development of novel antimalarial agents. Repurposing human kinase inhibitors provides a potential expedited route given the availability of a diverse array of kinase-targeting drugs that are approved or in clinical trials. Phenotypic screening of a library of type II human kinase inhibitors identified compound 1 as a lead antimalarial, which was initially developed to target human ephrin type A receptor 2 (EphA2). Here, we report a structure-activity relationship study and lead optimization of compound 1, which led to compound 33, with improved antimalarial activity and selectivity.


Subject(s)
Antimalarials , Malaria , Receptor, EphA2 , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria/drug therapy , Structure-Activity Relationship , Africa , Plasmodium falciparum
4.
Cell Chem Biol ; 31(2): 312-325.e9, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37995692

ABSTRACT

Our previous study identified 52 antiplasmodial peptaibols isolated from fungi. To understand their antiplasmodial mechanism of action, we conducted phenotypic assays, assessed the in vitro evolution of resistance, and performed a transcriptome analysis of the most potent peptaibol, HZ NPDG-I. HZ NPDG-I and 2 additional peptaibols were compared for their killing action and stage dependency, each showing a loss of digestive vacuole (DV) content via ultrastructural analysis. HZ NPDG-I demonstrated a stepwise increase in DV pH, impaired DV membrane permeability, and the ability to form ion channels upon reconstitution in planar membranes. This compound showed no signs of cross resistance to targets of current clinical candidates, and 3 independent lines evolved to resist HZ NPDG-I acquired nonsynonymous changes in the P. falciparum multidrug resistance transporter, pfmdr1. Conditional knockdown of PfMDR1 showed varying effects to other peptaibol analogs, suggesting differing sensitivity.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Peptaibols/metabolism , Peptaibols/pharmacology , Antimalarials/pharmacology , Membrane Transport Proteins , Cell Membrane Permeability
5.
Elife ; 122023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737220

ABSTRACT

Drug resistance remains a major obstacle to malaria control and eradication efforts, necessitating the development of novel therapeutic strategies to treat this disease. Drug combinations based on collateral sensitivity, wherein resistance to one drug causes increased sensitivity to the partner drug, have been proposed as an evolutionary strategy to suppress the emergence of resistance in pathogen populations. In this study, we explore collateral sensitivity between compounds targeting the Plasmodium dihydroorotate dehydrogenase (DHODH). We profiled the cross-resistance and collateral sensitivity phenotypes of several DHODH mutant lines to a diverse panel of DHODH inhibitors. We focus on one compound, TCMDC-125334, which was active against all mutant lines tested, including the DHODH C276Y line, which arose in selections with the clinical candidate DSM265. In six selections with TCMDC-125334, the most common mechanism of resistance to this compound was copy number variation of the dhodh locus, although we did identify one mutation, DHODH I263S, which conferred resistance to TCMDC-125334 but not DSM265. We found that selection of the DHODH C276Y mutant with TCMDC-125334 yielded additional genetic changes in the dhodh locus. These double mutant parasites exhibited decreased sensitivity to TCMDC-125334 and were highly resistant to DSM265. Finally, we tested whether collateral sensitivity could be exploited to suppress the emergence of resistance in the context of combination treatment by exposing wildtype parasites to both DSM265 and TCMDC-125334 simultaneously. This selected for parasites with a DHODH V532A mutation which were cross-resistant to both compounds and were as fit as the wildtype parent in vitro. The emergence of these cross-resistant, evolutionarily fit parasites highlights the mutational flexibility of the DHODH enzyme.


Malaria affects around 240 million people around the world every year. The microscopic parasite responsible for the disease are carried by certain mosquitoes and gets transmitted to humans through bites. These parasites are increasingly acquiring genetic mutations that make anti-malaria medication less effective, creating an urgent need for alternative treatment approaches. Several new malaria drugs being explored in preclinical research work by binding to an enzyme known as DHODH and preventing it from performing its usual role in the parasite. Previous work found that, in some cases, malaria parasites that evolved resistance to one type of DHODH inhibitor (by acquiring mutations in their DHODH enzyme) then became more vulnerable to another kind. It may be possible to leverage this 'collateral sensitivity' by designing treatments which combine two DHODH inhibitors and therefore make it harder for the parasites to evolve resistance. To investigate this possibility, Mandt et al. first tested several DHODH inhibitors to find the one that was most potent against drug-resistant parasites. In subsequent experiments, they combined TCMDC-125334, the best candidate that emerged from these tests, with a DHODH inhibitor that works well against vulnerable parasites. However, the parasites still rapidly evolved resistance. Further work identified a new DHODH mutation that allowed the parasites to evade both drugs simultaneously. Together, these findings suggest that the DHODH enzyme may not be the best target for new malaria drugs because many it can acquire many possible mutations that confer resistance. Such results may inform other studies that aim to harness collateral sensitivity to fight against a range of harmful agents.


Subject(s)
Antimalarials , Malaria, Falciparum , Oxidoreductases Acting on CH-CH Group Donors , Parasites , Animals , Humans , Dihydroorotate Dehydrogenase , Malaria, Falciparum/parasitology , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , DNA Copy Number Variations , Drug Collateral Sensitivity , Parasites/metabolism
6.
mBio ; 14(5): e0176823, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37750720

ABSTRACT

IMPORTANCE: Malaria is a devastating disease caused by Plasmodium parasites. The evolution of parasite drug resistance continues to hamper progress toward malaria elimination, and despite extensive efforts to control malaria, it remains a leading cause of death in Mozambique and other countries in the region. The development of successful vaccines and identification of molecular markers to track drug efficacy are essential for managing the disease burden. We present an analysis of the parasite genome in Mozambique, a country with one of the highest malaria burdens globally and limited available genomic data, revealing current selection pressure. We contribute additional evidence to limited prior studies supporting the effectiveness of SWGA in producing reliable genomic data from complex clinical samples. Our results provide the identity of genomic loci that may be associated with current antimalarial drug use, including artemisinin and lumefantrine, and reveal selection pressure predicted to compromise the efficacy of current vaccine candidates.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Parasites , Animals , Humans , Plasmodium falciparum/genetics , Mozambique , Antimalarials/pharmacology , Malaria/drug therapy , Genomics , Drug Resistance/genetics , Malaria, Falciparum/drug therapy
7.
Res Sq ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37546892

ABSTRACT

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure activity relationship and the selectivity mechanism.

8.
Nat Rev Drug Discov ; 22(10): 807-826, 2023 10.
Article in English | MEDLINE | ID: mdl-37652975

ABSTRACT

Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.


Subject(s)
Antimalarials , Plasmodium , Animals , Female , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance , Drug Discovery/methods
9.
Cell Chem Biol ; 30(5): 486-498.e7, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37172592

ABSTRACT

Chemical genetic approaches have had a transformative impact on discovery of drug targets for malaria but have primarily been used for parasite targets. To identify human pathways required for intrahepatic development of parasite, we implemented multiplex cytological profiling of malaria infected hepatocytes treated with liver stage active compounds. Some compounds, including MMV1088447 and MMV1346624, exhibited profiles similar to cells treated with nuclear hormone receptor (NHR) agonist/antagonists. siRNAs targeting human NHRs, or their signaling partners identified eight genes that were critical for Plasmodium berghei infection. Knockdown of NR1D2, a host NHR, significantly impaired parasite growth by downregulation of host lipid metabolism. Importantly, treatment with MMV1088447 and MMV1346624 but not other antimalarials, phenocopied the lipid metabolism defect of NR1D2 knockdown. Our data underlines the use of high-content imaging for host-cellular pathway deconvolution, highlights host lipid metabolism as a drug-able human pathway and provides new chemical biology tools for studying host-parasite interactions.


Subject(s)
Malaria , Parasites , Animals , Humans , Hepatocytes/metabolism , Liver/metabolism , Malaria/drug therapy , Malaria/metabolism , Plasmodium berghei/genetics
10.
Nat Commun ; 14(1): 3059, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244916

ABSTRACT

In vitro evolution of drug resistance is a powerful approach for identifying antimalarial targets, however, key obstacles to eliciting resistance are the parasite inoculum size and mutation rate. Here we sought to increase parasite genetic diversity to potentiate resistance selections by editing catalytic residues of Plasmodium falciparum DNA polymerase δ. Mutation accumulation assays reveal a ~5-8 fold elevation in the mutation rate, with an increase of 13-28 fold in drug-pressured lines. Upon challenge with the spiroindolone PfATP4-inhibitor KAE609, high-level resistance is obtained more rapidly and at lower inocula than wild-type parasites. Selections also yield mutants with resistance to an "irresistible" compound, MMV665794 that failed to yield resistance with other strains. We validate mutations in a previously uncharacterised gene, PF3D7_1359900, which we term quinoxaline resistance protein (QRP1), as causal for resistance to MMV665794 and a panel of quinoxaline analogues. The increased genetic repertoire available to this "mutator" parasite can be leveraged to drive P. falciparum resistome discovery.


Subject(s)
Antimalarials , Malaria, Falciparum , Parasites , Animals , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Parasites/metabolism , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Antimalarials/therapeutic use , Mutation , Drug Resistance/genetics , Protozoan Proteins/metabolism
11.
Annu Rev Microbiol ; 77: 111-129, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37018842

ABSTRACT

Infections caused by malaria parasites place an enormous burden on the world's poorest communities. Breakthrough drugs with novel mechanisms of action are urgently needed. As an organism that undergoes rapid growth and division, the malaria parasite Plasmodium falciparum is highly reliant on protein synthesis, which in turn requires aminoacyl-tRNA synthetases (aaRSs) to charge tRNAs with their corresponding amino acid. Protein translation is required at all stages of the parasite life cycle; thus, aaRS inhibitors have the potential for whole-of-life-cycle antimalarial activity. This review focuses on efforts to identify potent plasmodium-specific aaRS inhibitors using phenotypic screening, target validation, and structure-guided drug design. Recent work reveals that aaRSs are susceptible targets for a class of AMP-mimicking nucleoside sulfamates that target the enzymes via a novel reaction hijacking mechanism. This finding opens up the possibility of generating bespoke inhibitors of different aaRSs, providing new drug leads.


Subject(s)
Amino Acyl-tRNA Synthetases , Antimalarials , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Plasmodium falciparum/genetics , Malaria/drug therapy , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Transfer/therapeutic use
12.
ACS Infect Dis ; 9(4): 1004-1021, 2023 04 14.
Article in English | MEDLINE | ID: mdl-36919909

ABSTRACT

Protein kinases have proven to be a very productive class of therapeutic targets, and over 90 inhibitors are currently in clinical use primarily for the treatment of cancer. Repurposing these inhibitors as antimalarials could provide an accelerated path to drug development. In this study, we identified BI-2536, a known potent human polo-like kinase 1 inhibitor, with low nanomolar antiplasmodial activity. Screening of additional PLK1 inhibitors revealed further antiplasmodial candidates despite the lack of an obvious orthologue of PLKs in Plasmodium. A subset of these inhibitors was profiled for their in vitro killing profile, and commonalities between the killing rate and inhibition of nuclear replication were noted. A kinase panel screen identified PfNEK3 as a shared target of these PLK1 inhibitors; however, phosphoproteome analysis confirmed distinct signaling pathways were disrupted by two structurally distinct inhibitors, suggesting PfNEK3 may not be the sole target. Genomic analysis of BI-2536-resistant parasites revealed mutations in genes associated with the starvation-induced stress response, suggesting BI-2536 may also inhibit an aminoacyl-tRNA synthetase.


Subject(s)
Antimalarials , Humans , Antimalarials/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Polo-Like Kinase 1
13.
Sci Transl Med ; 15(686): eadc9249, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36888694

ABSTRACT

Development of antimalarial compounds into clinical candidates remains costly and arduous without detailed knowledge of the target. As resistance increases and treatment options at various stages of disease are limited, it is critical to identify multistage drug targets that are readily interrogated in biochemical assays. Whole-genome sequencing of 18 parasite clones evolved using thienopyrimidine compounds with submicromolar, rapid-killing, pan-life cycle antiparasitic activity showed that all had acquired mutations in the P. falciparum cytoplasmic isoleucyl tRNA synthetase (cIRS). Engineering two of the mutations into drug-naïve parasites recapitulated the resistance phenotype, and parasites with conditional knockdowns of cIRS became hypersensitive to two thienopyrimidines. Purified recombinant P. vivax cIRS inhibition, cross-resistance, and biochemical assays indicated a noncompetitive, allosteric binding site that is distinct from that of known cIRS inhibitors mupirocin and reveromycin A. Our data show that Plasmodium cIRS is an important chemically and genetically validated target for next-generation medicines for malaria.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/chemistry , Isoleucine-tRNA Ligase/metabolism , Plasmodium falciparum/metabolism , Malaria, Falciparum/parasitology , Malaria/drug therapy , Drug Resistance
14.
Nat Commun ; 14(1): 1455, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927839

ABSTRACT

Identifying how small molecules act to kill malaria parasites can lead to new "chemically validated" targets. By pressuring Plasmodium falciparum asexual blood stage parasites with three novel structurally-unrelated antimalarial compounds (MMV665924, MMV019719 and MMV897615), and performing whole-genome sequence analysis on resistant parasite lines, we identify multiple mutations in the P. falciparum acyl-CoA synthetase (ACS) genes PfACS10 (PF3D7_0525100, M300I, A268D/V, F427L) and PfACS11 (PF3D7_1238800, F387V, D648Y, and E668K). Allelic replacement and thermal proteome profiling validates PfACS10 as a target of these compounds. We demonstrate that this protein is essential for parasite growth by conditional knockdown and observe increased compound susceptibility upon reduced expression. Inhibition of PfACS10 leads to a reduction in triacylglycerols and a buildup of its lipid precursors, providing key insights into its function. Analysis of the PfACS11 gene and its mutations point to a role in mediating resistance via decreased protein stability.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Plasmodium falciparum/metabolism , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Mutation , Ligases/metabolism
15.
ACS Infect Dis ; 9(3): 527-539, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36763526

ABSTRACT

Current malaria treatments are threatened by drug resistance, and new drugs are urgently needed. In a phenotypic screen for new antimalarials, we identified (S)-SW228703 ((S)-SW703), a tyrosine amide with asexual blood and liver stage activity and a fast-killing profile. Resistance to (S)-SW703 is associated with mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) and P. falciparum acetyl CoA transporter (PfACT), similarly to several other compounds that share features such as fast activity and liver-stage activity. Compounds with these resistance mechanisms are thought to act in the ER, though their targets are unknown. The tyramine of (S)-SW703 is shared with some reported PfCARL-associated compounds; however, we observed that strict S-stereochemistry was required for the activity of (S)-SW703, suggesting differences in the mechanism of action or binding mode. (S)-SW703 provides a new chemical series with broad activity for multiple life-cycle stages and a fast-killing mechanism of action, available for lead optimization to generate new treatments for malaria.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Malaria, Falciparum/drug therapy , Malaria/drug therapy , Liver , Amines/metabolism
16.
ACS Infect Dis ; 9(3): 668-691, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36853190

ABSTRACT

The development of new antimalarials is required because of the threat of resistance to current antimalarial therapies. To discover new antimalarial chemotypes, we screened the Janssen Jumpstarter library against the P. falciparum asexual parasite and identified the 7-N-substituted-3-oxadiazole quinolone hit class. We established the structure-activity relationship and optimized the antimalarial potency. The optimized analog WJM228 (17) showed robust metabolic stability in vitro, although the aqueous solubility was limited. Forward genetic resistance studies uncovered that WJM228 targets the Qo site of cytochrome b (cyt b), an important component of the mitochondrial electron transport chain (ETC) that is essential for pyrimidine biosynthesis and an established antimalarial target. Profiling against drug-resistant parasites confirmed that WJM228 confers resistance to the Qo site but not Qi site mutations, and in a biosensor assay, it was shown to impact the ETC via inhibition of cyt b. Consistent with other cyt b targeted antimalarials, WJM228 prevented pre-erythrocytic parasite and male gamete development and reduced asexual parasitemia in a P. berghei mouse model of malaria. Correcting the limited aqueous solubility and the high susceptibility to cyt b Qo site resistant parasites found in the clinic will be major obstacles in the future development of the 3-oxadiazole quinolone antimalarial class.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Quinolones , Animals , Mice , Antimalarials/pharmacology , Cytochromes b , Folic Acid Antagonists/metabolism , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum , Quinolones/pharmacology
17.
Chemistry ; 29(20): e202203958, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36617500

ABSTRACT

Here, we present remarkable epoxyketone-based proteasome inhibitors with low nanomolar in vitro potency for blood-stage Plasmodium falciparum and low cytotoxicity for human cells. Our best compound has more than 2,000-fold greater selectivity for erythrocytic-stage P. falciparum over HepG2 and H460 cells, which is largely driven by the accommodation of the parasite proteasome for a D-amino acid in the P3 position and the preference for a difluorobenzyl group in the P1 position. We isolated the proteasome from P. falciparum cell extracts and determined that the best compound is 171-fold more potent at inhibiting the ß5 subunit of P. falciparum proteasome when compared to the same subunit of the human constitutive proteasome. These compounds also significantly reduce parasitemia in a P. berghei mouse infection model and prolong survival of animals by an average of 6 days. The current epoxyketone inhibitors are ideal starting compounds for orally bioavailable anti-malarial drugs.


Subject(s)
Antimalarials , Plasmodium , Mice , Animals , Humans , Proteasome Inhibitors/chemistry , Proteasome Endopeptidase Complex/chemistry , Plasmodium falciparum , Antimalarials/pharmacology
18.
Curr Opin Microbiol ; 70: 102220, 2022 12.
Article in English | MEDLINE | ID: mdl-36228458

ABSTRACT

Phenotypic screening methods have placed numerous preclinical candidates into the antimalarial drug-discovery pipeline. As more chemically validated targets become available, efforts are shifting to target-based drug discovery. Here, we briefly review some of the most attractive targets that have been identified in recent years.


Subject(s)
Antimalarials , Antimalarials/pharmacology , Drug Discovery
19.
Sci Transl Med ; 14(667): eabo7219, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36260689

ABSTRACT

Compounds acting on multiple targets are critical to combating antimalarial drug resistance. Here, we report that the human "mammalian target of rapamycin" (mTOR) inhibitor sapanisertib has potent prophylactic liver stage activity, in vitro and in vivo asexual blood stage (ABS) activity, and transmission-blocking activity against the protozoan parasite Plasmodium spp. Chemoproteomics studies revealed multiple potential Plasmodium kinase targets, and potent inhibition of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4Kß) and cyclic guanosine monophosphate-dependent protein kinase (PKG) was confirmed in vitro. Conditional knockdown of PI4Kß in ABS cultures modulated parasite sensitivity to sapanisertib, and laboratory-generated P. falciparum sapanisertib resistance was mediated by mutations in PI4Kß. Parasite metabolomic perturbation profiles associated with sapanisertib and other known PI4Kß and/or PKG inhibitors revealed similarities and differences between chemotypes, potentially caused by sapanisertib targeting multiple parasite kinases. The multistage activity of sapanisertib and its in vivo antimalarial efficacy, coupled with potent inhibition of at least two promising drug targets, provides an opportunity to reposition this pyrazolopyrimidine for malaria.


Subject(s)
Antimalarials , Plasmodium , Animals , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum , MTOR Inhibitors , 1-Phosphatidylinositol 4-Kinase , Guanosine Monophosphate , Life Cycle Stages , TOR Serine-Threonine Kinases , Sirolimus , Mammals
20.
Nat Commun ; 13(1): 4976, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008486

ABSTRACT

The development of next-generation antimalarials that are efficacious against the human liver and asexual blood stages is recognized as one of the world's most pressing public health challenges. In recent years, aminoacyl-tRNA synthetases, including prolyl-tRNA synthetase, have emerged as attractive targets for malaria chemotherapy. We describe the development of a single-step biochemical assay for Plasmodium and human prolyl-tRNA synthetases that overcomes critical limitations of existing technologies and enables quantitative inhibitor profiling with high sensitivity and flexibility. Supported by this assay platform and co-crystal structures of representative inhibitor-target complexes, we develop a set of high-affinity prolyl-tRNA synthetase inhibitors, including previously elusive aminoacyl-tRNA synthetase triple-site ligands that simultaneously engage all three substrate-binding pockets. Several compounds exhibit potent dual-stage activity against Plasmodium parasites and display good cellular host selectivity. Our data inform the inhibitor requirements to overcome existing resistance mechanisms and establish a path for rational development of prolyl-tRNA synthetase-targeted anti-malarial therapies.


Subject(s)
Amino Acyl-tRNA Synthetases , Antimalarials , Plasmodium , Amino Acyl-tRNA Synthetases/chemistry , Antimalarials/chemistry , Antimalarials/pharmacology , Humans , Piperidines , Plasmodium falciparum , Quinazolinones , RNA, Transfer
SELECTION OF CITATIONS
SEARCH DETAIL
...