Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Signal ; 11(526)2018 04 17.
Article in English | MEDLINE | ID: mdl-29666306

ABSTRACT

A major challenge in cancer genomics is identifying "driver" mutations from the many neutral "passenger" mutations within a given tumor. To identify driver mutations that would otherwise be lost within mutational noise, we filtered genomic data by motifs that are critical for kinase activity. In the first step of our screen, we used data from the Cancer Cell Line Encyclopedia and The Cancer Genome Atlas to identify kinases with truncation mutations occurring within or before the kinase domain. The top 30 tumor-suppressing kinases were aligned, and hotspots for loss-of-function (LOF) mutations were identified on the basis of amino acid conservation and mutational frequency. The functional consequences of new LOF mutations were biochemically validated, and the top 15 hotspot LOF residues were used in a pan-cancer analysis to define the tumor-suppressing kinome. A ranked list revealed MAP2K7, an essential mediator of the c-Jun N-terminal kinase (JNK) pathway, as a candidate tumor suppressor in gastric cancer, despite its mutational frequency falling within the mutational noise for this cancer type. The majority of mutations in MAP2K7 abolished its catalytic activity, and reactivation of the JNK pathway in gastric cancer cells harboring LOF mutations in MAP2K7 or the downstream kinase JNK suppressed clonogenicity and growth in soft agar, demonstrating the functional relevance of inactivating the JNK pathway in gastric cancer. Together, our data highlight a broadly applicable strategy to identify functional cancer driver mutations and define the JNK pathway as tumor-suppressive in gastric cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Genomics/methods , Loss of Function Mutation , MAP Kinase Kinase 7/genetics , MAP Kinase Signaling System/genetics , Stomach Neoplasms/genetics , Amino Acid Sequence , Cell Line, Tumor , Genes, Tumor Suppressor , Humans , MAP Kinase Kinase 7/chemistry , MAP Kinase Kinase 7/metabolism , Molecular Dynamics Simulation , Sequence Homology, Amino Acid , Stomach Neoplasms/enzymology , Stomach Neoplasms/pathology
2.
Nat Commun ; 5: 3947, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24853205

ABSTRACT

Non-coding RNAs (ncRNAs) are frequent and prevalent across the taxa. Although individual non-coding loci have been assigned a function, most are uncharacterized. Their global biological significance is unproven and remains controversial. Here we investigate the role played by ncRNAs in the stress response of Schizosaccharomyces pombe. We integrate global proteomics and RNA sequencing data to identify a systematic programme in which elevated antisense RNA arising both from ncRNAs and from 3'-overlapping convergent gene pairs is directly associated with substantial reductions in protein levels throughout the genome. We describe an extensive array of ncRNAs with trans associations that have the potential to influence multiple pathways. Deletion of one such locus reduces levels of atf1, a transcription factor downstream of the stress-activated mitogen-activated protein kinase (MAPK) pathway, and alters sensitivity to oxidative stress. These non-coding transcripts therefore regulate specific stress responses, adding unanticipated information-processing capacity to the MAPK signalling system.


Subject(s)
RNA, Fungal/genetics , RNA, Untranslated/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Fungal , Genes, Fungal , Open Reading Frames/genetics , Osmotic Pressure , Oxidative Stress/genetics , Proteome/metabolism , RNA, Antisense/metabolism , RNA, Fungal/metabolism , RNA, Untranslated/metabolism , Schizosaccharomyces pombe Proteins/genetics , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL