Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(2): e0304523, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38170977

ABSTRACT

Multidrug resistance poses global challenges, particularly with regard to Gram-negative bacterial infections. In view of the lack of new antibiotics, drug enhancers, such as efflux pump inhibitors (EPIs), have increasingly come into focus. A number of chemically diverse agents have been reported to inhibit AcrB, the main multidrug transporter in Escherichia coli, and homologs in other Gram-negative bacteria. However, due to the often varying methodologies used for their characterization, results remain difficult to compare. In this study, using a defined selection of antibiotics known to be efflux substrates, we reevaluated 38 published compounds for their in vitro EPI activity. When examined in an E. coli strain with stable wild-type AcrB overexpression, we found 17 compounds showing at least fourfold enhancing potency with more than 2 out of 10 test drugs (belonging to eight antibiotic classes). Pyranopyridines (MBX series) were confirmed as the most potent inhibitors among agents reported so far. A new and surprising finding was that their activity, unlike that of the pyridylpiperazine EPI BDM88855, was highly susceptible to the AcrB double-mutation G141D_N282Y, which had previously been shown to diminish drug enhancing of 1-(1-naphthylmethyl)piperazine in a predominantly substrate-specific manner. Conversely, transmembrane region mutation V411A, while eliminating the drug potentiating of the BDM compound, did not decrease the activity of the MBX EPIs. Besides comparative reassessment of the potency of reported EPIs, the study demonstrated the usefulness of mutagenesis approaches providing tools for an initial discrimination of EPIs regarding their mode of function.IMPORTANCEInfections with difficult-to-treat multidrug-resistant bacteria pose an urgent global threat in view of the stagnating development of new antimicrobial substances. Efflux pumps in Gram-negative pathogens are known to substantially contribute to multidrug resistance making them promising targets for chemotherapeutic interventions to restore the efficacy of conventional antibiotics. In the present study, the in vitro activity of previously reported efflux pump inhibitors was reassessed using standardized conditions. Relevant drug sensitizing activity could be proven for almost half of the tested compounds. Further characterization of potent inhibitors was achieved by investigating the impact of specific efflux pump mutations. A double-mutation previously known to decrease the activity of the arylpiperazine 1-(1-naphthylmethyl)piperazine also impaired that of the highly efficient pyranopyridine efflux pump inhibitors. Our findings provide direct comparability of reported efflux pump inhibitors and contribute to the elucidation of their mode of action.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Multidrug Resistance-Associated Proteins , Anti-Bacterial Agents/pharmacology , Mutation , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
2.
J Pharm Biomed Anal ; 177: 112877, 2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31568967

ABSTRACT

The present study aimed to design, develop, and optimize an analytical procedure to perform the quantitative determination of ecdysterone in commercially available dietary supplements. The newly developed procedure is based on the extraction of ecdysterone from the supplements and the subsequent analysis by an optimized UHPLC-MS/MS method. Chromatographic separation was performed on an Agilent Eclipse Plus C18 column (2.1 mm x 100 mm, particle size 1.8 µm). The mass spectrometer was operated in positive ionization mode (ESI+) with acquisition in dynamic multiple reaction monitoring (dMRM) mode. Using the protonated molecular ion [M+H]+ ecdysterone (target) and cortisol (internal reference) were detected at m/z 481 and 363, respectively. The assay was fully validated according to ICH guidelines and the method resulted to be fit for purpose in terms of accuracy and precision (CV% and RE% <15). Time-different intermediate precision was found within the reported range according to AOAC guideline for dietary supplements and botanicals. Quantitation has been performed using an external calibration considering the minimal matrix influences, preliminarily assessed following a cross comparison with an elaborate and time consuming standard addition method. The method was successfully applied to 12 different dietary supplements labelled to contain ecdysterone, showing an actual content generally much lower than the labelled one.


Subject(s)
Dietary Supplements/analysis , Drug Labeling/standards , Ecdysterone/analysis , Quality Control , Chromatography, High Pressure Liquid/methods , Dietary Supplements/standards , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...