Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(16): 18624-18633, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680298

ABSTRACT

Poly(ethylene-co-vinyl acetate) (PEVA) is a versatile elastic, durable, and biocompatible copolymer, which can be processed by melt extrusion or solvent casting, while electrospinning has been reported as challenging. Here, a spinnability window should be identified using a total of 10 different PEVA materials with increasing vinyl acetate content (∼12-40 wt %) and molecular weights (∼60-130 kDa). Based on the solubility predictions by calculating Hansen solubility parameters, candidate solvents were experimentally evaluated. Spinning experiments with systematic alteration of solution composition and processing parameters revealed the causes of material deposition at the spraying nozzle and multijet spinning characteristics. By introducing a spinnability score that accounts for product characteristics and reproducibility, the spinnability of PEVA could be rationalized. Overall, it was demonstrated that PEVA solutions with an apparent viscosity of 920-3500 mPa·s can be spun to bead-free fibers of ∼10 µm. This size may allow suspension electrospinning of composite fibers in the future.

2.
ACS Biomater Sci Eng ; 10(3): 1481-1493, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38374768

ABSTRACT

Controlling cellular responses to nanoparticles so far is predominantly empirical, typically requiring multiple rounds of optimization of particulate carriers. In this study, a systematic model-assisted approach should lead to the identification of key parameters that account for particle properties and their cellular recognition. A copolymer particle library was synthesized by a combinatorial approach in soap free emulsion copolymerization of styrene and methyl methacrylate, leading to a broad compositional as well as constitutional spectrum. The proposed structure-property relationships could be elucidated by multivariate analysis of the obtained experimental data, including physicochemical characteristics such as molar composition, molecular weight, particle diameter, and particle charge as well as the cellular uptake pattern of nanoparticles. It was found that the main contributors for particle size were the polymers' molecular weight and the zeta potential, while particle uptake is mainly directed by the particles' composition. This knowledge and the reported model-assisted procedure to identify relevant parameters affecting particle engulfment of particulate carriers by nonphagocytic and phagocytic cells can be of high relevance for the rational design of pharmaceutical nanocarriers and assessment of biodistribution and nanotoxicity, respectively.


Subject(s)
Polymers , Polymers/chemistry , Tissue Distribution , Multivariate Analysis
3.
Int J Mol Sci ; 24(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003579

ABSTRACT

Polymer nanoparticles continue to be of high interest in life science applications. Still, adsorption processes occurring in protein-containing media and their implications for biological responses are not generally predictable. Here, the effect of nanoparticle composition on the adsorption of bovine serum albumin (BSA), fibronectin (FN) and immunoglobulin G (IgG) as structurally and functionally different model proteins was explored by systematically altering the composition of poly(methyl methacrylate-co-styrene) nanoparticles with sizes in a range of about 550 nm. As determined by protein depletion from the suspension medium via a colorimetric assay, BSA and IgG adsorbed at similar quantities, while FN reached larger masses of adsorbed protein (up to 0.4 ± 0.06 µg·cm-2 BSA, 0.42 ± 0.09 µg·cm-2 IgG, 0.72 ± 0.04 µg·cm-2 FN). A higher content of styrene as the more hydrophobic polymer component enhanced protein binding, which suggests a contribution of hydrophobic interactions despite the particles exhibiting strongly negatively charged surfaces with zeta potentials of -44 to -52 mV. The quantities of adsorbed proteins were estimated to correspond to a confluent surface coverage. Overall, this study illustrated how protein binding can be controlled by systematically varying the nanoparticle bulk composition and may serve as a basis for establishing interfaces with a targeted level of protein retention and/or presentation.


Subject(s)
Nanoparticles , Styrene , Polymethyl Methacrylate , Serum Albumin, Bovine/chemistry , Immunoglobulin G , Methacrylates , Adsorption , Surface Properties
4.
Pharmaceutics ; 14(12)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36559107

ABSTRACT

Mechanical stress is recognized as a principle for opening enclosed compartments through compression, stretching, or shear, eventually resulting in the onset of a diffusion-controlled release. Here, we hypothesized that the geometrical design of cavities (cut-outs) introduced as containers in elastic polymer substrates and sealed with a brittle coating layer would enable a pre-defined release of different compounds by stress concentration phenomena. Design criteria such as cut-out shapes, orientations, and depths were initially assessed for suitably different stress concentrations in computational models. In substrates fabricated from polydimethylsiloxane by photolithographic techniques, the local strains at horizontal rectangular, circular, and vertical rhombus-shaped cut-outs systematically increased under horizontal stretching as proposed. When filled with model compounds and coated with poly(n-butyl cyanoacrylate), a pre-defined induced breakage of the coating and compound release was confirmed upon continuous uniaxial stretching. This proof of concept demonstrates how device design and functions interlink and may motivate further exploration in technology and medicine for deformation-induced on-demand dosage applications.

5.
Polymers (Basel) ; 14(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36432991

ABSTRACT

Assessing the mechanical properties of materials is of fundamental relevance for their rational usage, but can be challenging with standard tensile testing for highly brittle polymers used, e.g., as coatings. Here, a procedure for the mechanical analysis of free-standing poly(alkyl cyanoacrylate) (PACA) films using microindentation has been explored. Rigid and transparent films from PACA with various side chain compositions were formed on top of square polymer frames by in situ polymerization. Under microscopic control, the free-standing films were analyzed using a microelectromechanical sensing system. By this procedure, decreasing Young's moduli E for increasing PACA side chain length and flexibility were determined with strain at break εB between 0.36% for poly(ethyl cyanoacrylate) and 4.6% for poly(methoxyethyl cyanoacrylate). Based on this successful application, the applied methodology may be relevant for characterizing various coating materials, which are otherwise hard to form as thin free-standing films, and using the data, e.g., in computationally assisted design and evaluation of hybrid material devices.

6.
Pharmaceutics ; 14(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365149

ABSTRACT

Switchable polymeric materials, which can respond to triggering signals through changes in their properties, have become a major research focus for parenteral controlled delivery systems. They may enable externally induced drug release or delivery that is adaptive to in vivo stimuli. Despite the promise of new functionalities using switchable materials, several of these concepts may need to face challenges associated with clinical use. Accordingly, this review provides an overview of various types of switchable polymers responsive to different types of stimuli and addresses opportunities and challenges that may arise from their application in biomedicine.

7.
Polymers (Basel) ; 14(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36145905

ABSTRACT

Ellipsoidal polymer particles can be prepared from spheres by unidirectional stretching at elevated temperatures, while the particles' aspect ratios (AR) that result from this phantom stretching methodology are often not precisely predictable. Here, an elastic deformation model was exemplarily evaluated for ~50 µm spherical microparticles from PPDL-PTHF block copolymers. The prolate ellipsoidal particles, obtained by stretching in polyvinyl alcohol phantoms, differed in dimensions at identical relative phantoms elongations up to 150%, depending on the relative polymer composition and their systematically altered mechanical properties. Importantly, the resulting particle shapes within the studied range of AR up to ~4 matched the predictions of the elastic deformation model, which includes information of the elastic moduli of phantom and particle materials. These data suggest that the model may be applicable to predict the conditions needed to precisely prepare ellipsoids of desired AR and may be applicable to various deformable particle materials.

8.
Soft Matter ; 17(41): 9326-9331, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34605513

ABSTRACT

Spherical particles from shape-memory polymers (SMP) can be stretched to ellipsoids with high aspect ratio (AR) and temporarily stabilized. They can switch back to low AR upon thermal stimulation. Here, the creation of an alternative shape-switching capability of particles from low to high AR is introduced, where a SMP matrix from polyvinyl alcohol (PVA) is used to create crosslinked high AR particles and to program the embedded micrometer-sized particles from a second SMP (oligo(ε-caprolactone) micronetworks, MN) with a low switching temperature Tsw. This programming proceeds through shape-recovery of the PVA matrix, from which the MN are harvested by PVA matrix dissolution. The use of a dissolvable SMP matrix may be a general strategy to efficiently create systems with complex moving capabilities.

9.
Clin Hemorheol Microcirc ; 77(2): 201-219, 2021.
Article in English | MEDLINE | ID: mdl-33185590

ABSTRACT

The size of particulate carriers is key to their transport and distribution in biological systems, and needs to be tailored in the higher submicron range to enable follicular uptake for dermal treatment. Oligodepsipeptides are promising nanoparticulate carrier systems as they can be designed to exhibit enhanced interaction with drug molecules. Here, a fabrication scheme for drug-loaded submicron particles from oligo[3-(S)-sec-butylmorpholine-2,5-dione]diol (OBMD) is presented based on an emulsion solvent evaporation method with cosolvent, surfactant, and polymer concentration as variable process parameters. The particle size (300-950 nm) increased with lower surfactant concentration and higher oligomer concentration. The addition of acetone increased the particle size at low surfactant concentration. Particle size remained stable upon the encapsulation of models compounds dexamethasone (DXM) and Nile red (NR), having different physicochemical properties. DXM was released faster compared to NR due to its higher water solubility. Overall, the results indicated that both drug-loading and size control of OBMD submicron particles can be achieved. When applied on porcine ear skin samples, the NR-loaded particles have been shown to allow NR penetration into the hair follicle and the depth reached with the 300 nm particles was comparable to the one reached with the cream formulation. A potential benefit of the particles compared to a cream is their sustained release profile.


Subject(s)
Nanoparticles/chemistry , Animals , Depsipeptides/chemistry , Humans , Particle Size , Swine
10.
Int J Pharm ; 584: 119401, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32387311

ABSTRACT

Droplet-based microfluidics has grown out of its infancy as technical solutions became available for a broad community of researchers aiming at highly defined structures of polymer-based drug carrier systems. While the beauty of obtained particles and the precision of their (continuous) production may be very fascinating from a scientific perspective, microfluidics is further developing towards the use in production processes. This review summarizes recent concepts and developments in droplet-based microfluidics covering theoretical aspects of the operation principle as well as approaches to increased throughput and thus to enable efficient production. The application of microfluidic templating for preparing functional polymer particles including dispersions of preformed polymers, multicompartment particles and the use of template droplets as microreactors for carrier synthesis are also included. When operated at high-throughput, in a continuous process and with excellent control over particle properties, microfluidics may become a preparation technique for particulate carriers competitive to batch emulsification not only in research but also for commercial fabrication, e.g., of individualized, patient-specific formulations.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Microfluidics/methods , Polymers/chemistry , Technology, Pharmaceutical/methods , Microfluidic Analytical Techniques , Particle Size , Surface Properties
11.
Int J Pharm ; 567: 118461, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31247276

ABSTRACT

The effect of non-spherical particle shapes on cellular uptake has been reported as a general design parameter to control cellular recognition of particulate drug carriers. Beside shape, also size and cell-particle ratio should mutually effect phagocytosis. Here, the capability to control cellular uptake of poly(ɛ-caprolactone) (PCL) based polymer micronetwork colloids (MNC), a carrier system that can be transferred to various shapes, is explored in vitro at test conditions allowing multiple cell-particle contacts. PCL-based MNC were synthesized as spheres with a diameter of ∼6, ∼10, and 13 µm, loaded with a fluorescent dye by a specific technique of swelling, re-dispersion and drying, and transferred into different ellipsoidal shapes by a phantom stretching method. The boundaries of MNC deformability to prolate ellipsoid target shapes were systematically analyzed and found to be at an aspect ratio AR of ∼4 as obtained by a phantom elongation εph of ∼150%. Uptake studies with a murine macrophages cell line showed shape dependency of phagocytosis for selected conditions when varying particle sizes (∼6 and 10 µm),and shapes (εph: 0, 75 or 150%), cell-particle ratios (1:1, 1:2, 1:10, 1:50), and time points (1-24 h). For larger-sized MNC, there was no significant shape effect on phagocytosis as these particles may associate with more than one cell, thus increasing the possibility of phagocytosis by any of these cells. Accordingly, controlling shape effects on phagocytosis for carriers made from degradable polymers relevant for medical applications requires considering further parameters besides shape, such as kinetic aspects of the exposure and uptake by cells.


Subject(s)
Colloids/administration & dosage , Drug Carriers/administration & dosage , Macrophages/metabolism , Phagocytosis , Polyesters/administration & dosage , Animals , Cell Line , Humans , Mice
12.
J Control Release ; 301: 146-156, 2019 05 10.
Article in English | MEDLINE | ID: mdl-30885615

ABSTRACT

High drug loads of nanoparticles are essential to efficiently provide a desired dosage in the required timeframe, however, these conditions may not be reached with so far established degradable matrices. Our conceptual approach for increasing the drug load is based on strengthening the affinity between drug and matrix in combination with stabilizing drug-matrix-hybrids through strong intermolecular matrix interactions. Here, a method for designing such complex drug-matrix hybrids is introduced employing computational methods (molecular dynamics and docking) as well as experimental studies (affinity, drug loading and distribution, drug release from films and nanoparticles). As model system, dexamethasone (DXM), relevant for the treatment of inflammatory diseases, in combination with poly[(rac-lactide)-co-glycolide] (PLGA) as standard degradable matrix or oligo[(3-(S)-sec-butyl)morpholine-2,5-dione]diol (OBMD) as matrix with hypothesized stronger interaction with DXM were investigated. Docking studies predicted higher affinity of DXM to OBMD than PLGA and displayed amide bond participation in hydrogen bonding with OBMD. Experimental investigations on films and nanoparticles, i.e. matrices of different shapes and sizes, confirmed this phenomenon as shown e.g. by a ~10 times higher solid state solubility of DXM in OBMD than in PLGA. DXM-loaded particles of ~ 150 nm prepared by nanoprecipitation in aqueous environment had a drug loading (DL) up to 16 times higher when employing OBMD as matrix compared to PLGA carriers due to enhanced drug retention in the OBMD phase. Importantly, drug relase periods were not altered as the release from films and particles was mainly ruled by the diffusion length as well as matrix degradation rather than the matrix type, which can be assigned to water diffusing into the matrix and breaking up of drug-matrix hydrogen bonds. Overall, the presented design and fabrication scheme showed predictive power and might universally enable the screening of drug/matrix interactions particularly to expand the oligodepsipeptide platform technology, e.g. by varying the depsipeptide side chains, for drug carrier and release systems.


Subject(s)
Anti-Inflammatory Agents/chemistry , Depsipeptides/chemistry , Dexamethasone/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Drug Design , Drug Liberation , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
13.
J Control Release ; 284: 240-247, 2018 08 28.
Article in English | MEDLINE | ID: mdl-29913222

ABSTRACT

In order to provide best control of the regeneration process for each individual patient, the release of protein drugs administered during surgery may need to be timely adapted and/or delayed according to the progress of healing/regeneration. This study aims to establish a multifunctional implant system for a local on-demand release, which is applicable for various types of proteins. It was hypothesized that a tubular multimaterial container kit, which hosts the protein of interest as a solution or gel formulation, would enable on-demand release if equipped with the capacity of diameter reduction upon external stimulation. Using devices from poly(ɛ-caprolactone) networks, it could be demonstrated that a shape-memory effect activated by heat or NIR light enabled on-demand tube shrinkage. The decrease of diameter of these shape-memory tubes (SMT) allowed expelling the payload as demonstrated for several proteins including SDF-1α, a therapeutically relevant chemotactic protein, to achieve e.g. continuous release with a triggered add-on dosing (open tube) or an on-demand onset of bolus or sustained release (sealed tube). Considering the clinical relevance of protein factors in (stem) cell attraction to lesions and the progress in monitoring biomarkers in body fluids, such on-demand release systems may be further explored e.g. in heart, nerve, or bone regeneration in the future.


Subject(s)
Delayed-Action Preparations/chemistry , Drug Implants/chemistry , Polyesters/chemistry , Proteins/administration & dosage , Chemokine CXCL12/administration & dosage , Humans , Infrared Rays
14.
Biomacromolecules ; 18(11): 3819-3833, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-28954190

ABSTRACT

The rational design of a polyplex gene carrier aims to balance maximal effectiveness of nucleic acid transfection into cells with minimal adverse effects. Depsipeptide blocks with an Mn ∼ 5 kDa exhibiting strong physical interactions were conjugated with PEI moieties (2.5 or 10 kDa) to di- and triblock copolymers. Upon nanoparticle formation and complexation with DNA, the resulting polyplexes (sizes typically 60-150 nm) showed remarkable stability compared to PEI-only or lipoplex and facilitated efficient gene delivery. Intracellular trafficking was visualized by observing fluorescence-labeled pDNA and highlighted the effective cytoplasmic uptake of polyplexes and release of DNA to the perinuclear space. Specifically, a triblock copolymer with a middle depsipeptide block and two 10 kDa PEI swallowtail structures mediated the highest levels of transgenic VEGF secretion in mesenchymal stem cells with low cytotoxicity. These nanocarriers form the basis for a delivery platform technology, especially for gene transfer to primary human cells.


Subject(s)
DNA/genetics , Depsipeptides/chemistry , Gene Transfer Techniques , Nanoparticles/chemistry , Cell Survival/genetics , DNA/chemistry , Depsipeptides/genetics , Humans , Plasmids/chemistry , Plasmids/genetics , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Primary Cell Culture , Transfection/methods
15.
Acc Chem Res ; 50(4): 723-732, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28199083

ABSTRACT

The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.

16.
Eur J Pharm Biopharm ; 116: 66-75, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27989766

ABSTRACT

Nanoparticles can improve topical drug delivery: size, surface properties and flexibility of polymer nanoparticles are defining its interaction with the skin. Only few studies have explored skin penetration for one series of structurally related polymer particles with systematic alteration of material composition. Here, a series of rigid poly[acrylonitrile-co-(N-vinyl pyrrolidone)] model nanoparticles stably loaded with Nile Red or Rhodamin B, respectively, was comprehensively studied for biocompatibility and functionality. Surface properties were altered by varying the molar content of hydrophilic NVP from 0 to 24.1% and particle size ranged from 35 to 244nm. Whereas irritancy and genotoxicity were not revealed, lipophilic and hydrophilic nanoparticles taken up by keratinocytes affected cell viability. Skin absorption of the particles into viable skin ex vivo was studied using Nile Red as fluorescent probe. Whilst an intact stratum corneum efficiently prevented penetration, almost complete removal of the horny layer allowed nanoparticles of smaller size and hydrophilic particles to penetrate into viable epidermis and dermis. Hence, systematic variations of nanoparticle properties allows gaining insights into critical criteria for biocompatibility and functionality of novel nanocarriers for topical drug delivery and risks associated with environmental exposure.


Subject(s)
Acrylonitrile/chemistry , Biocompatible Materials/chemistry , Epidermis/metabolism , Fluorescent Dyes/chemistry , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Pyrrolidinones/chemistry , Acrylonitrile/administration & dosage , Biocompatible Materials/administration & dosage , Cell Survival/drug effects , Cells, Cultured , Chemistry, Pharmaceutical/methods , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems/methods , Fluorescent Dyes/administration & dosage , Humans , Hydrophobic and Hydrophilic Interactions , Keratinocytes/metabolism , Oxazines/administration & dosage , Oxazines/chemistry , Particle Size , Polymers/administration & dosage , Polymers/chemistry , Pyrrolidinones/administration & dosage , Skin Absorption/drug effects , Surface Properties
17.
Eur J Pharm Biopharm ; 116: 61-65, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27847277

ABSTRACT

Surfactants are required for the formation and stabilization of hydrophobic polymeric particles in aqueous environment. In order to form submicron particles of varying sizes from oligo[3-(S)-sec-butylmorpholine-2,5-dione]diols ((OBMD)-diol), different surfactants were investigated. As new surfactants, four-armed star-shaped oligo(ethylene glycol)s of molecular weights of 5-20kDa functionalized with desamino-tyrosine (sOEG-DAT) resulted in smaller particles with lower PDI than with desaminotyrosyl tyrosine (sOEG-DATT) in an emulsion/solvent evaporation method. In a second set of experiments, sOEG-DAT of Mn=10kDa was compared with the commonly employed emulsifiers polyvinylalcohol (PVA), polyoxyethylene (20) sorbitan monolaurate (Tween 20), and D-α-tocopherol polyethylene glycol succinate (VIT E-TPGS) for OBMD particle preparation. sOEG-DAT allowed to systematically change sizes in a range of 300 up to 900nm with narrow polydispersity, while in the other cases, a lower size range (250-400nm, PVA; ∼300nm, Tween 20) or no effective particle formation was observed. The ability of tailoring particle size in a broad range makes sOEG-DAT of particular interest for the formation of oligodepsipeptide particles, which can further be investigated as drug carriers for controlled delivery.


Subject(s)
Depsipeptides/chemistry , Surface-Active Agents/chemistry , Drug Carriers/chemistry , Emulsifying Agents/chemistry , Emulsions/chemistry , Molecular Weight , Nanoparticles/chemistry , Particle Size , Polyethylene Glycols/chemistry , Polymers/chemistry , Polysorbates/chemistry , Polyvinyl Alcohol/chemistry , Solvents/chemistry , Tyrosine/chemistry , alpha-Tocopherol/analogs & derivatives , alpha-Tocopherol/chemistry
19.
J Control Release ; 242: 71-79, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27498020

ABSTRACT

Polycationic micelles have shown advantageous properties as nucleic acid delivery vectors both in vitro and in vivo. In contrast to polycationic micelles reported so far, we designed particles integrating a sufficient nucleic acid condensation capability by polycationic polyethylenimine (PEI) segments as well as only a mild cytotoxic behavior. The micelles composed of a hydrophobic oligoester core with glycolide units resulting in fast degradation after cellular internalization in combination with PEG moieties acting as shielding agents. By grafting branched 25kDa polyethylenimine (PEI25) and poly(ethylene glycol) (PEG) on poly[(ε-caprolactone)-co-glycolide] (CG), amphiphilic PEI-CG-PEI and PEG-CG block copolymers were used to form a series of micelles via self-assembly of PEI-CG-PEI or co-assembly of both copolymers for DNA and siRNA delivery. This modular system enabled a systematic investigation of different parameters and their synergetic effects as different functions were introduced. The polyplex formation and serum stability, cytotoxicity, and transfection activity could be tailored by changing the CG chain length in PEI-based copolymer, incorporating PEG-CG, and varying the N/P ratio. All micelle-based polyplex compositions showed high DNA transfection activity according to reporter gene-expression and an exceptionally high knockdown in siRNA delivery experiments. Remarkably, the GFP expression of >99% cells was successfully knocked down by micelle-mediated siRNA interference, resulting in a decrease of two orders of magnitude in fluorescence intensity. Incorporation of PEG-CG in the micelles reduced the PEI-related cytotoxicity, and markedly enhanced the serum stability of both DNA and siRNA polyplexes. Compared with homo-PEI25, these micelles showed several advantages including the lower toxicity, higher siRNA transfection efficiency and higher polyplex stability in the presence of serum. This study therefore provides an effective approach to tune the structure, property and function of polycationic micelles for efficient DNA and siRNA delivery, which could contribute to the design and development of novel non-viral transfection vectors with superb functionality.


Subject(s)
DNA/administration & dosage , Gene Transfer Techniques , Polymers/chemistry , RNA, Small Interfering/administration & dosage , Gene Expression Regulation , Gene Knockdown Techniques , Genetic Vectors , Green Fluorescent Proteins/genetics , Humans , Micelles , Polyamines/chemistry , Polyelectrolytes , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Transfection
20.
J Control Release ; 242: 3-15, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27449743

ABSTRACT

The topical application of drug-loaded particles has been explored extensively aiming at a dermal, follicular or transdermal drug delivery. This review summarizes the present state of the field of polymeric nanocarriers for skin application, also covering methodologies to clinically characterize their interaction and penetration in skin in vivo. Furthermore, with a focus on a clinical perspective, a number of questions are addressed: How well are existing nanoparticle systems penetrating the skin? Which functions of new carrier concepts may meet the clinical requirements? To which extend will instrumental imaging techniques provide information on the biological functions of nanocarriers? Which issues have to be addressed for translating experimental concepts into a future clinical application?


Subject(s)
Drug Delivery Systems , Nanoparticles , Polymers/chemistry , Administration, Cutaneous , Animals , Drug Carriers/chemistry , Humans , Skin/metabolism , Skin Absorption
SELECTION OF CITATIONS
SEARCH DETAIL
...