Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2297, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485972

ABSTRACT

Land-based carbon removals, specifically afforestation/reforestation and bioenergy with carbon capture and storage (BECCS), vary widely in 1.5 °C and 2 °C scenarios generated by integrated assessment models. Because underlying drivers are difficult to assess, we use a well-known integrated assessment model, GCAM, to demonstrate that land-based carbon removals are sensitive to the strength and scope of land-based mitigation policies. We find that while cumulative afforestation/reforestation and BECCS deployment are inversely related, they are both typically part of cost-effective mitigation pathways, with forestry options deployed earlier. While the CO2 removal intensity (removal per unit land) of BECCS is typically higher than afforestation/reforestation over long time horizons, the BECCS removal intensity is sensitive to feedstock and technology choices whereas the afforestation/reforestation removal intensity is sensitive to land policy choices. Finally, we find a generally positive relationship between agricultural prices and removal effectiveness of land-based mitigation, suggesting that some trade-offs may be difficult to avoid.

2.
Glob Environ Change ; 73: 1-15, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36203542

ABSTRACT

Researchers explore future economic and climate scenarios using global economic and integrated assessment models to understand long-term interactions between human development and global environmental changes. However, differences in trade modeling approaches are an important source of uncertainty in these types of assessments, particularly for regional projections. In this study, we modified the Global Change Analysis Model (GCAM) to include a novel logit-based Armington trade structure, to examine two approaches to modeling trade: (1) an approach that represents segmented regional markets (SRM), and (2) an approach that represents integrated world markets (IWM). Our results demonstrate that assuming IWM, i.e., homogeneous product modeling and neglecting economic geography, could lead to lower cropland use (i.e., by 115 million hectares globally) and terrestrial carbon fluxes (i.e., by 25%) by the end of the century under the default GCAM scenario, compared with the logit-based Armington SRM structure. The results are highly heterogeneous across regions, with more pronounced regional trade responses driven by global market integration. Our study highlights the critical role that assumptions about future trade paradigms play in global economic and integrated assessment modeling. The results imply that closer harmonization of trade modeling approaches and trade parameter values could increase the convergence of regional results among models in model intercomparison studies.

3.
Appl Energy ; 302: 1-10, 2021.
Article in English | MEDLINE | ID: mdl-36072824

ABSTRACT

Comprehensive study of the environmental impacts associated with demand for an energy resource or carrier in any one sector requires a full consideration of the direct and indirect impacts on the rest of the regional and global energy system. Biofuels are especially complex since they have feedbacks to both the energy system and to regional and global crop markets. In this study, we present a strategy for dynamically including the upstream energy and transportation links to the Global Change Analysis Model. We incorporate the following inter-sectoral linkages: energy inputs to crop production, energy inputs to fossil resource production, and freight transport requirements of energy and agricultural commodities. We assess the implications of explicitly including these links by measuring the global impacts of increased corn ethanol demand in the United States with and without these links included. Although the net global impact of the upstream links on energy and emissions are relatively modest in the scenarios analyzed, the inclusion of these links illustrates interesting trade-offs in energy and transportation demand among fossil fuel and agriculture sectors. We find that the increment in agricultural energy driven by the additional biofuel production associated with the corn ethanol shock is higher than the decrease of energy associated with the displaced fossil fuel consumption. However, this effect is compensated by the reduction in freight transportation requirements of energy. These sectoral interactions suggest that this level of modeling detail could be important in evaluating future analytical questions.

4.
Glob Chang Biol ; 23(2): 767-781, 2017 02.
Article in English | MEDLINE | ID: mdl-27474896

ABSTRACT

Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover.


Subject(s)
Climate Change , Uncertainty , Climate , Earth, Planet , Forecasting , Plants
5.
Proc Natl Acad Sci U S A ; 107(46): 19633-8, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20921413

ABSTRACT

Land-use change to meet 21st-century demands for food, fuel, and fiber will depend on many interactive factors, including global policies limiting anthropogenic climate change and realized improvements in agricultural productivity. Climate-change mitigation policies will alter the decision-making environment for land management, and changes in agricultural productivity will influence cultivated land expansion. We explore to what extent future increases in agricultural productivity might offset conversion of tropical forest lands to crop lands under a climate mitigation policy and a contrasting no-policy scenario in a global integrated assessment model. The Global Change Assessment Model is applied here to simulate a mitigation policy that stabilizes radiative forcing at 4.5 W m(-2) (approximately 526 ppm CO(2)) in the year 2100 by introducing a price for all greenhouse gas emissions, including those from land use. These scenarios are simulated with several cases of future agricultural productivity growth rates and the results downscaled to produce gridded maps of potential land-use change. We find that tropical forests are preserved near their present-day extent, and bioenergy crops emerge as an effective mitigation option, only in cases in which a climate mitigation policy that includes an economic price for land-use emissions is in place, and in which agricultural productivity growth continues throughout the century. We find that idealized land-use emissions price assumptions are most effective at limiting deforestation, even when cropland area must increase to meet future food demand. These findings emphasize the importance of accounting for feedbacks from land-use change emissions in global climate change mitigation strategies.


Subject(s)
Agriculture/trends , Climate Change , Conservation of Energy Resources/methods , Conservation of Energy Resources/trends , Tropical Climate , Biofuels/analysis , Carbon Dioxide/analysis , Models, Theoretical , Zea mays/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...