Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
N Biotechnol ; 83: 74-81, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032630

ABSTRACT

Targeted cancer therapy is a promising alternative to the currently established cancer treatments, aiming to selectively kill cancer cells while sparing healthy tissues. Hereby, molecular targeting agents, such as monoclonal antibodies, are used to bind to cancer cell surface markers specifically. Although these agents have shown great clinical success, limitations still remain such as low tumor penetration and off-target effects. To overcome this limitation, novel fusion proteins comprised of the two proteins ADAPT6 and Horseradish Peroxidase (HRP) were engineered. Cancer cell targeting is hereby enabled by the small scaffold protein ADAPT6, engineered to specifically bind to human epidermal growth factor receptor 2 (HER2), a cell surface marker overexpressed in various cancer types, while the enzyme HRP oxidizes the nontoxic prodrug indole-3-acetic acid (IAA) which leads to the formation of free radicals and thereby to cytotoxic effects on cancer cells. The high affinity to HER2, as well as the enzymatic activity of HRP, were still present for the ADAPT6-HRP fusion proteins. Further, in vitro cytotoxicity assay using HER2-positive SKOV-3 cells revealed a clear advantage of the fusion proteins over free HRP by association of the fusion proteins directly to the cancer cells and therefore sustained cell killing. This novel strategy of combining ADAPT6 and HRP represents a promising approach and a viable alternative to antibody conjugation for targeted cancer therapy.

3.
Mol Pharm ; 18(1): 328-337, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33259222

ABSTRACT

Albumin-binding fusion partners are frequently used as a means for the in vivo half-life extension of small therapeutic molecules that would normally be cleared very rapidly from circulation. However, in applications where small size is key, fusion to an additional molecule can be disadvantageous. Albumin-derived affinity proteins (ADAPTs) are a new type of scaffold proteins based on one of the albumin-binding domains of streptococcal protein G, with engineered binding specificities against numerous targets. Here, we engineered this scaffold further and showed that this domain, as small as 6 kDa, can harbor two distinct binding surfaces and utilize them to interact with two targets simultaneously. These novel ADAPTs were developed to possess affinity toward both serum albumin as well as another clinically relevant target, thus circumventing the need for an albumin-binding fusion partner. To accomplish this, we designed a phage display library and used it to successfully select for single-domain bispecific binders toward a panel of targets: TNFα, prostate-specific antigen (PSA), C-reactive protein (CRP), renin, angiogenin, myeloid-derived growth factor (MYDGF), and insulin. Apart from successfully identifying bispecific binders for all targets, we also demonstrated the formation of the ternary complex consisting of the ADAPT together with albumin and each of the five targets, TNFα, PSA, angiogenin, MYDGF, and insulin. This simultaneous binding of albumin and other targets presents an opportunity to combine the advantages of small molecules with those of larger ones allowing for lower cost of goods and noninvasive administration routes while still maintaining a sufficient in vivo half-life.


Subject(s)
Recombinant Fusion Proteins/metabolism , Serum Albumin/metabolism , Bacterial Proteins/metabolism , Half-Life , Life Expectancy , Protein Binding/physiology , Streptococcus/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL