Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
JAMA Netw Open ; 4(9): e2125584, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34559230

ABSTRACT

Importance: Histone deacetylase inhibitors have been repeatedly shown to elevate progranulin levels in preclinical models. This report describes the first randomized clinical trial of a histone deacetylase inhibitor in frontotemporal dementia (FTD) resulting from progranulin (GRN) gene variations. Objective: To characterize the safety, tolerability, plasma pharmacokinetics, and pharmacodynamic effects of oral FRM-0334 on plasma progranulin and other exploratory biomarkers, including fluorodeoxyglucose (FDG)-positron emission tomography (PET), in individuals with GRN haploinsufficiency. Design, Setting, and Participants: In this randomized, double-blind, placebo-controlled, dose-escalating, phase 2a safety, tolerability, and pharmacodynamic clinical study, 2 doses of a histone deacetylase inhibitor (FRM-0334) were administered to participants with prodromal to moderate FTD with granulin variations. Participants were recruited from January 13, 2015, to April 13, 2016. The study included 27 participants with prodromal (n = 8) or mild-to-moderate symptoms of FTD (n = 19) and heterozygous pathogenic variations in GRN and was conducted at multiple centers in North America, the UK, and the European Union. Data were analyzed from June 9, 2019, to May 13, 2021. Interventions: Daily oral placebo (n = 5), 300 mg of FRM-0334 (n = 11), or 500 mg of FRM-0334 (n = 11) was administered for 28 days. Main Outcomes and Measures: Primary outcomes were safety and tolerability of FRM-0334 and its peripheral pharmacodynamic effect on plasma progranulin. Secondary outcomes were the plasma pharmacokinetic profile of FRM-0334 and its pharmacodynamic effect on cerebrospinal fluid progranulin. Exploratory outcomes were FDG-PET, FTD clinical severity, and cerebrospinal fluid biomarkers (neurofilament light chain [NfL], amyloid ß 1-42, phosphorylated tau 181, and total tau [t-tau]). Results: A total of 27 participants (mean [SD] age, 56.6 [10.5] years; 16 women [59.3%]; 26 White participants [96.3%]) with GRN variations were randomized and completed treatment. FRM-0334 was safe and well tolerated but did not affect plasma progranulin (4.3 pg/mL per day change after treatment; 95% CI, -10.1 to 18.8 pg/mL; P = .56), cerebrospinal fluid progranulin (0.42 pg/mL per day; 95% CI, -0.12 to 0.95 pg/mL; P = .13), or exploratory pharmacodynamic measures. Plasma FRM-0334 exposure did not increase proportionally with dose. Brain FDG-PET data were available in 26 of 27 randomized participants. In a cross-sectional analysis of 26 individuals, bifrontal cortical FDG hypometabolism was associated with worse Clinical Dementia Rating (CDR) plus National Alzheimer's Coordinating Center frontotemporal lobar degeneration sum of boxes score (b = -3.6 × 10-2 standardized uptake value ratio [SUVR] units/CDR units; 95% CI, -4.9 × 10-2 to -2.2 × 10-2; P < .001), high cerebrospinal fluid NfL (b = -9.2 × 10-5 SUVR units/pg NfL/mL; 95% CI, -1.3 × 10-4 to -5.6 × 10-5; P < .001), and high CSF t-tau (-7.2 × 10-4 SUVR units/pg t-tau/mL; 95% CI, -1.4 × 10-3 to -9.5 × 10-5; P = .03). Conclusions and Relevance: In this randomized clinical trial, the current formulation of FRM-0334 did not elevate PRGN levels, which could reflect a lack of efficacy at attained exposures, low bioavailability, or some combination of the 2 factors. Bifrontal FDG-PET is a sensitive measure of symptomatic GRN haploinsufficiency. International multicenter clinical trials of FTD-GRN are feasible. Trial Registration: ClinicalTrials.gov Identifier: NCT02149160.


Subject(s)
Frontotemporal Dementia/drug therapy , Frontotemporal Dementia/genetics , Haploinsufficiency/drug effects , Histone Deacetylase Inhibitors/therapeutic use , Organic Chemicals/therapeutic use , Progranulins/metabolism , Adult , Aged , Biological Availability , Female , Frontotemporal Dementia/metabolism , Histone Deacetylase Inhibitors/adverse effects , Histone Deacetylase Inhibitors/pharmacokinetics , Humans , Male , Middle Aged , Organic Chemicals/adverse effects , Organic Chemicals/pharmacokinetics , Progranulins/genetics
2.
J Alzheimers Dis ; 71(1): 57-82, 2019.
Article in English | MEDLINE | ID: mdl-31403948

ABSTRACT

BACKGROUND: Small aggregates (oligomers) of the toxic proteins amyloid-ß (Aß) and phospho-tau (p-tau) are essential contributors to Alzheimer's disease (AD). In mouse models for AD or human AD brain extracts, Transcranial Electromagnetic Treatment (TEMT) disaggregates both Aß and p-tau oligomers, and induces brain mitochondrial enhancement. These apparent "disease-modifying" actions of TEMT both prevent and reverse memory impairment in AD transgenic mice. OBJECTIVE: To evaluate the safety and initial clinical efficacy of TEMT against AD, a comprehensive open-label clinical trial was performed. METHODS: Eight mild/moderate AD patients were treated with TEMT in-home by their caregivers for 2 months utilizing a unique head device. TEMT was given for two 1-hour periods each day, with subjects primarily evaluated at baseline, end-of-treatment, and 2 weeks following treatment completion. RESULTS: No deleterious behavioral effects, discomfort, or physiologic changes resulted from 2 months of TEMT, as well as no evidence of tumor or microhemorrhage induction. TEMT induced clinically important and statistically significant improvements in ADAS-cog, as well as in the Rey AVLT. TEMT also produced increases in cerebrospinal fluid (CSF) levels of soluble Aß1-40 and Aß1-42, cognition-related changes in CSF oligomeric Aß, a decreased CSF p-tau/Aß1-42 ratio, and reduced levels of oligomeric Aß in plasma. Pre- versus post-treatment FDG-PET brain scans revealed stable cerebral glucose utilization, with several subjects exhibiting enhanced glucose utilization. Evaluation of diffusion tensor imaging (fractional anisotropy) scans in individual subjects provided support for TEMT-induced increases in functional connectivity within the cognitively-important cingulate cortex/cingulum. CONCLUSION: TEMT administration to AD subjects appears to be safe, while providing cognitive enhancement, changes to CSF/blood AD markers, and evidence of stable/enhanced brain connectivity.


Subject(s)
Alzheimer Disease/therapy , Transcranial Magnetic Stimulation/methods , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Cognition , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Neuropsychological Tests , Transcranial Magnetic Stimulation/adverse effects , Treatment Outcome , tau Proteins/blood , tau Proteins/cerebrospinal fluid
SELECTION OF CITATIONS
SEARCH DETAIL