Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 22(9): e13928, 2023 09.
Article in English | MEDLINE | ID: mdl-37522798

ABSTRACT

Inhibition of glycogen breakdown blocks memory formation in young animals, but it stimulates the maintenance of the long-term potentiation, a cellular mechanism of memory formation, in hippocampal slices of old animals. Here, we report that a 2-week treatment with glycogen phosphorylase inhibitor BAY U6751 alleviated memory deficits and stimulated neuroplasticity in old mice. Using the 2-Novel Object Recognition and Novel Object Location tests, we discovered that the prolonged intraperitoneal administration of BAY U6751 improved memory formation in old mice. This was accompanied by changes in morphology of dendritic spines in hippocampal neurons, and by "rejuvenation" of hippocampal proteome. In contrast, in young animals, inhibition of glycogen degradation impaired memory formation; however, as in old mice, it did not alter significantly the morphology and density of cortical dendritic spines. Our findings provide evidence that prolonged inhibition of glycogen phosphorolysis improves memory formation of old animals. This could lead to the development of new strategies for treatment of age-related memory deficits.


Subject(s)
Glycogen Phosphorylase , Hippocampus , Mice , Animals , Hippocampus/metabolism , Glycogen Phosphorylase/metabolism , Memory Disorders/metabolism , Cognition , Glycogen/metabolism , Dendritic Spines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...