Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 32(3): 723-33, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20943265

ABSTRACT

Maintenance of polarisation of epithelial cells and preservation of their specialized phenotype are great challenges for bioengineering of epithelial tissues. Mimicking the basement membrane and underlying extracellular matrix (ECM) with respect to its hierarchical fiber-like morphology and display of bioactive signals is prerequisite for optimal epithelial cell function in vitro. We report here on a bottom-up approach based on hydrogen-bonded supramolecular polymers and ECM-peptides to make an electro-spun, bioactive supramolecular mesh which can be applied as synthetic basement membrane. The supramolecular polymers used, self-assembled into nano-meter scale fibers, while at micro-meter scale fibers were formed by electro-spinning. We introduced bioactivity into these nano-fibers by intercalation of different ECM-peptides designed for stable binding. Living kidney membranes were shown to be bioengineered through culture of primary human renal tubular epithelial cells on these bioactive meshes. Even after a long-term culturing period of 19 days, we found that the cells on bioactive membranes formed tight monolayers, while cells on non-active membranes lost their monolayer integrity. Furthermore, the bioactive membranes helped to support and maintain renal epithelial phenotype and function. Thus, incorporation of ECM-peptides into electro-spun meshes via a hierarchical, supramolecular method is a promising approach to engineer bioactive synthetic membranes with an unprecedented structure. This approach may in future be applied to produce living bioactive membranes for a bio-artificial kidney.


Subject(s)
Basement Membrane/cytology , Basement Membrane/metabolism , Kidney Tubules/cytology , Kidney/cytology , Kidney/metabolism , Tissue Engineering/methods , Cells, Cultured , Epithelial Cells/cytology , Extracellular Matrix/chemistry , Humans
2.
Biomacromolecules ; 8(9): 2739-45, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17672503

ABSTRACT

Random copolymers of epsilon-caprolactone and 2-oxo-12-crown-4 ether, poly(CL-co-OC), were used as soft segments in the synthesis of a set of poly(urethane)urea thermoplastic elastomers. With increasing OC content, the soft segment crystallinity decreased, which influenced the mechanical properties: strain induced crystallization disappeared upon the introduction of OC into poly(CL). The material therefore became weaker, however, without a reduction in strain at break. All polymers showed mechanical properties that are suitable for soft tissue engineering. Degradation studies of poly(CL-co-OC) copolymers revealed a higher intrinsic rate of hydrolysis as compared to poly(CL). When at least two neighboring OC units were present in the soft segment, a jump in the intrinsic hydrolysis rate was observed. From this study we deduced an ideal OC:CL ratio for the thermoplastic elastomer soft segments for soft tissue engineering applications. An in vitro degradation study of these poly(urethane)urea showed an increased weight loss. Combined with the enhanced hydrophilicity and reduced crystallinity, we are confident that this will indeed lead to an increased degradation rate in vivo.


Subject(s)
Crown Ethers/chemistry , Polyesters/chemistry , Polyurethanes/chemistry , Tissue Engineering/methods , Materials Testing , Molecular Structure
3.
Biomacromolecules ; 7(12): 3385-95, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17154467

ABSTRACT

The molecular recognition properties of the hydrogen bonding segments in biodegradable thermoplastic elastomers were explored, aiming at the further functionalization of these potentially interesting biomaterials. A poly(epsilon-caprolactone)-based poly(urea) 2 was synthesized and characterized in terms of mechanical properties, processibility and histocompatibility. Comparison of the data with those obtained from the structurally related poly(urethane urea) 1 revealed that the difference in hard segment structure does not significantly affect the potency for application as a biomaterial. Nevertheless, the small differences in hard block composition had a strong effect on the molecular recognition properties of the hydrogen bonding segments. High selectivity was found for poly(urea) 2 in which bisureidobutylene-functionalized azobenzene dye 3 was selectively incorporated while bisureidopentylene-functionalized azobenzene dye 4 was completely released. In contrast, the incorporation of both dyes in poly(urethane urea) 1 led in both cases to their gradual release in time. Thermal analysis of the polymers in combination with variable temperature infrared experiments indicated that the hard blocks in 1 showed a sharp melting point, whereas those in 2 showed a very broad melting trajectory. This suggests a more precise organization of the hydrogen bonding segments in the hard blocks of poly(urea) 2 compared to poly(urethane urea) 1 and explains the results from the molecular recognition experiments. Preliminary results revealed that a bisureidobutylene-functionalized GRGDS peptide showed more supramolecular interaction with the PCL-based poly(urea), containing the bisureidobutylene recognition unit, as compared to HMW PCL, lacking this recognition unit.


Subject(s)
Elastomers/chemistry , Polyesters/chemistry , 3T3 Cells , Animals , Biocompatible Materials , Calorimetry, Differential Scanning , Cell Division , Elastomers/chemical synthesis , Mice , Microscopy, Atomic Force , Models, Molecular , Molecular Conformation , Polyesters/chemical synthesis , Surface Properties , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...