Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Basic Res Cardiol ; 119(2): 193-213, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38329498

ABSTRACT

The rupture of an atherosclerotic plaque cap overlying a lipid pool and/or necrotic core can lead to thrombotic cardiovascular events. In essence, the rupture of the plaque cap is a mechanical event, which occurs when the local stress exceeds the local tissue strength. However, due to inter- and intra-cap heterogeneity, the resulting ultimate cap strength varies, causing proper assessment of the plaque at risk of rupture to be lacking. Important players involved in tissue strength include the load-bearing collagenous matrix, macrophages, as major promoters of extracellular matrix degradation, and microcalcifications, deposits that can exacerbate local stress, increasing tissue propensity for rupture. This review summarizes the role of these components individually in tissue mechanics, along with the interplay between them. We argue that to be able to improve risk assessment, a better understanding of the effect of these individual components, as well as their reciprocal relationships on cap mechanics, is required. Finally, we discuss potential future steps, including a holistic multidisciplinary approach, multifactorial 3D in vitro model systems, and advancements in imaging techniques. The obtained knowledge will ultimately serve as input to help diagnose, prevent, and treat atherosclerotic cap rupture.


Subject(s)
Atherosclerosis , Calcinosis , Plaque, Atherosclerotic , Humans , Macrophages , Collagen , Stress, Mechanical
2.
ACS Appl Bio Mater ; 6(12): 5716-5729, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38032545

ABSTRACT

Introduction: Vascular smooth muscle cells (VSMCs) play a pivotal role in vascular homeostasis, with dysregulation leading to vascular complications. Human-induced pluripotent stem-cell (hiPSC)-derived VSMCs offer prospects for personalized disease modeling and regenerative strategies. Current research lacks comparative studies on the impact of three-dimensional (3D) substrate properties under cyclic strain on phenotypic adaptation in hiPSC-derived VSMCs. Here, we aim to investigate the impact of intrinsic substrate properties, such as the hydrogel's elastic modulus and cross-linking density in a 3D static and dynamic environment, on the phenotypical adaptation of human mural cells derived from hiPSC-derived organoids (ODMCs), compared to aortic VSMCs. Methods and results: ODMCs were cultured in two-dimensional (2D) conditions with synthetic or contractile differentiation medium or in 3D Gelatin Methacryloyl (GelMa) substrates with varying degrees of functionalization and percentages to modulate Young's modulus and cross-linking density. Cells in 3D substrates were exposed to cyclic, unidirectional strain. Phenotype characterization was conducted using specific markers through immunofluorescence and gene expression analysis. Under static 2D culture, ODMCs derived from hiPSCs exhibited a VSMC phenotype, expressing key mural markers, and demonstrated a level of phenotypic plasticity similar to primary human VSMCs. In static 3D culture, a substrate with a higher Young's modulus and cross-linking density promoted a contractile phenotype in ODMCs and VSMCs. Dynamic stimulation in the 3D substrate promoted a switch toward a contractile phenotype in both cell types. Conclusion: Our study demonstrates phenotypic plasticity of human ODMCs in response to 2D biological and 3D mechanical stimuli that equals that of primary human VSMCs. These findings may contribute to the advancement of tailored approaches for vascular disease modeling and regenerative strategies.


Subject(s)
Induced Pluripotent Stem Cells , Muscle, Smooth, Vascular , Humans , Muscle, Smooth, Vascular/metabolism , Hydrogels/chemistry , Cell Differentiation , Adaptation, Physiological
3.
APL Bioeng ; 7(3): 036120, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37786532

ABSTRACT

Rupture of the cap of an atherosclerotic plaque can lead to thrombotic cardiovascular events. It has been suggested, through computational models, that the presence of microcalcifications in the atherosclerotic cap can increase the risk of cap rupture. However, the experimental confirmation of this hypothesis is still lacking. In this study, we have developed a novel tissue-engineered model to mimic the atherosclerotic fibrous cap with microcalcifications and assess the impact of microcalcifications on cap mechanics. First, human carotid plaque caps were analyzed to determine the distribution, size, and density of microcalcifications in real cap tissue. Hydroxyapatite particles with features similar to real cap microcalcifications were used as microcalcification mimics. Injected clusters of hydroxyapatite particles were embedded in a fibrin gel seeded with human myofibroblasts which deposited a native-like collagenous matrix around the particles, during the 21-day culture period. Second harmonic multiphoton microscopy imaging revealed higher local collagen fiber dispersion in regions of hydroxyapatite clusters. Tissue-engineered caps with hydroxyapatite particles demonstrated lower stiffness and ultimate tensile stress than the control group samples under uniaxial tensile loading, suggesting increased rupture risk in atherosclerotic plaques with microcalcifications. This model supports previous computational findings regarding a detrimental role for microcalcifications in cap rupture risk and can further be deployed to elucidate tissue mechanics in pathologies with calcifying soft tissues.

4.
J Vis Exp ; (189)2022 11 11.
Article in English | MEDLINE | ID: mdl-36440849

ABSTRACT

The rupture of atherosclerotic plaques in coronary and carotid arteries is the primary cause of fatal cardiovascular events. However, the rupture mechanics of the heterogeneous, highly collagenous plaque tissue, and how this is related to the tissue's fibrous structure, are not known yet. Existing pipelines to study plaque mechanics are limited to obtaining only gross mechanical characteristics of the plaque tissue, based on the assumption of structural homogeneity of the tissue. However, fibrous plaque tissue is structurally heterogeneous, arguably mainly due to local variation in the collagen fiber architecture. The mechano-imaging pipeline described here has been developed to study the heterogeneous structural and mechanical plaque properties. In this pipeline, the tissue's local collagen architecture is characterized using multiphoton microscopy (MPM) with second-harmonic generation (SHG), and the tissue's failure behavior is characterized under uniaxial tensile testing conditions using digital image correlation (DIC) analysis. This experimental pipeline enables correlation of the local predominant angle and dispersion of collagen fiber orientation, the rupture behavior, and the strain fingerprints of the fibrous plaque tissue. The obtained knowledge is key to better understand, predict, and prevent atherosclerotic plaque rupture events.


Subject(s)
Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Carotid Arteries/diagnostic imaging , Carotid Arteries/pathology , Collagen , Fibrosis , Microscopy
5.
Front Cardiovasc Med ; 9: 885873, 2022.
Article in English | MEDLINE | ID: mdl-35656396

ABSTRACT

The equilibrium between scaffold degradation and neotissue formation, is highly essential for in situ tissue engineering. Herein, biodegradable grafts function as temporal roadmap to guide regeneration. The ability to monitor and understand the dynamics of degradation and tissue deposition in in situ cardiovascular graft materials is therefore of great value to accelerate the implementation of safe and sustainable tissue-engineered vascular grafts (TEVGs) as a substitute for conventional prosthetic grafts. In this study, we investigated the potential of Raman microspectroscopy and Raman imaging to monitor degradation kinetics of supramolecular polymers, which are employed as degradable scaffolds in in situ tissue engineering. Raman imaging was applied on in vitro degraded polymers, investigating two different polymer materials, subjected to oxidative and enzymatically-induced degradation. Furthermore, the method was transferred to analyze in vivo degradation of tissue-engineered carotid grafts after 6 and 12 months in a sheep model. Multivariate data analysis allowed to trace degradation and to compare the data from in vitro and in vivo degradation, indicating similar molecular observations in spectral signatures between implants and oxidative in vitro degradation. In vivo degradation appeared to be dominated by oxidative pathways. Furthermore, information on collagen deposition and composition could simultaneously be obtained from the same image scans. Our results demonstrate the sensitivity of Raman microspectroscopy to determine degradation stages and the assigned molecular changes non-destructively, encouraging future exploration of this techniques for time-resolved quality assessment of in situ tissue engineering processes.

6.
ACS Biomater Sci Eng ; 7(12): 5611-5621, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34767332

ABSTRACT

Biotin-avidin interactions have been explored for decades as a technique to functionalize biomaterials, as well as for in vivo targeting, but whether changes in these interactions can be leveraged for immunomodulation remain unknown. The goal of this study was to investigate how biotin density and avidin variant can be used to deliver the immunomodulatory cytokine, interleukin 4 (IL4), from a porous gelatin scaffold, Gelfoam, to primary human macrophages in vitro. Here, we demonstrate that the degree of scaffold biotinylation controlled the binding of two different avidin variants, streptavidin and CaptAvidin. Biotinylated scaffolds were also loaded with streptavidin and biotinylated IL4 under flow, suggesting a potential use for targeting this biomaterial in vivo. While biotin-avidin interactions did not appear to influence the protein release in this system, increasing degrees of biotinylation did lead to increased M2-like polarization of primary human macrophages over time in vitro, highlighting the capability to leverage biotin-avidin interactions to modulate the macrophage phenotype. These results demonstrate a versatile and modular strategy to impart immunomodulatory activity to biomaterials.


Subject(s)
Avidin , Biotin , Avidin/metabolism , Biocompatible Materials , Biotin/metabolism , Biotinylation , Humans , Immunomodulation
7.
J Vis Exp ; (166)2020 12 10.
Article in English | MEDLINE | ID: mdl-33369601

ABSTRACT

The use of resorbable biomaterials to induce regeneration directly in the body is an attractive strategy from a translational perspective. Such materials induce an inflammatory response upon implantation, which is the driver of subsequent resorption of the material and the regeneration of new tissue. This strategy, also known as in situ tissue engineering, is pursued to obtain cardiovascular replacements such as tissue-engineered vascular grafts. Both the inflammatory and the regenerative processes are determined by the local biomechanical cues on the scaffold (i.e., stretch and shear stress). Here, we describe in detail the use of a custom-developed bioreactor that uniquely enables the decoupling of stretch and shear stress on a tubular scaffold. This allows for the systematic and standardized evaluation of the inflammatory and regenerative capacity of tubular scaffolds under the influence of well-controlled mechanical loads, which we demonstrate on the basis of a dynamic co-culture experiment using human macrophages and myofibroblasts. The key practical steps in this approach-the construction and setting up of the bioreactor, preparation of the scaffolds and cell seeding, application and maintenance of stretch and shear flow, and sample harvesting for analysis-are discussed in detail.


Subject(s)
Bioreactors , Tissue Engineering , Tissue Scaffolds , Biocompatible Materials , Biomechanical Phenomena , Cells, Cultured , Humans , Stress, Mechanical
8.
Adv Biosyst ; 4(6): e1900249, 2020 06.
Article in English | MEDLINE | ID: mdl-32390338

ABSTRACT

Resorbable synthetic scaffolds designed to regenerate living tissues and organs inside the body have emerged as a clinically attractive technology to replace diseased blood vessels. However, mismatches between scaffold design and in vivo hemodynamic loading (i.e., cyclic stretch and shear stress) can result in aberrant inflammation and adverse tissue remodeling, leading to premature graft failure. Yet, the underlying mechanisms remain elusive. Here, a human in vitro model is presented that mimics the transient local inflammatory and biomechanical environments that drive scaffold-guided tissue regeneration. The model is based on the coculture of human (myo)fibroblasts and macrophages in a bioreactor platform that decouples cyclic stretch and shear stress. Using a resorbable supramolecular elastomer as the scaffold material, it is revealed that cyclic stretch initially reduces proinflammatory cytokine secretion and, especially when combined with shear stress, stimulates IL-10 secretion. Moreover, cyclic stretch stimulates downstream (myo)fibroblast proliferation and matrix deposition. In turn, shear stress attenuates cyclic-stretch-induced matrix growth by enhancing MMP-1/TIMP-1-mediated collagen remodeling, and synergistically alters (myo)fibroblast phenotype when combined with cyclic stretch. The findings suggest that shear stress acts as a stabilizing factor in cyclic stretch-induced tissue formation and highlight the distinct roles of hemodynamic loads in the design of resorbable vascular grafts.


Subject(s)
Blood Vessels/physiology , Macrophages/metabolism , Models, Biological , Myofibroblasts/metabolism , Regeneration , Stress, Mechanical , Tissue Scaffolds/chemistry , Coculture Techniques , Humans
9.
Biomater Sci ; 8(1): 132-147, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31709425

ABSTRACT

Biomaterials are increasingly used for in situ vascular tissue engineering, wherein resorbable fibrous scaffolds are implanted as temporary carriers to locally initiate vascular regeneration. Upon implantation, macrophages infiltrate and start degrading the scaffold, while simultaneously driving a healing cascade via the secretion of paracrine factors that direct the behavior of tissue-producing cells. This balance between neotissue formation and scaffold degradation must be maintained at all times to ensure graft functionality. However, the grafts are continuously exposed to hemodynamic loads, which can influence macrophage response in a hitherto unknown manner and thereby tilt this delicate balance. Here we aimed to unravel the effects of physiological levels of shear stress and cyclic stretch on biomaterial-activated macrophages, in terms of polarization, scaffold degradation and paracrine signaling to tissue-producing cells (i.e. (myo)fibroblasts). Human THP-1-derived macrophages were seeded in electrospun polycaprolactone bis-urea scaffolds and exposed to shear stress (∼1 Pa), cyclic stretch (∼1.04), or a combination thereof for 8 days. The results showed that macrophage polarization distinctly depended on the specific loading regime applied. In particular, hemodynamic loading decreased macrophage degradative activity, especially in conditions of cyclic stretch. Macrophage activation was enhanced upon exposure to shear stress, as evidenced from the upregulation of both pro- and anti-inflammatory cytokines. Exposure to the supernatant of these dynamically cultured macrophages was found to amplify the expression of tissue formation- and remodeling-related genes in (myo)fibroblasts statically cultured in comparable electrospun scaffolds. These results emphasize the importance of macrophage mechano-responsiveness in biomaterial-driven vascular regeneration.


Subject(s)
Biocompatible Materials/pharmacology , Macrophages/cytology , Macrophages/immunology , Myofibroblasts/cytology , Cell Line , Hemodynamics , Humans , Macrophage Activation , Macrophages/drug effects , Polyesters , Stress, Mechanical , THP-1 Cells , Tissue Engineering , Tissue Scaffolds
10.
Article in English | MEDLINE | ID: mdl-31080796

ABSTRACT

In situ tissue engineering is a technology in which non-cellular biomaterial scaffolds are implanted in order to induce local regeneration of replaced or damaged tissues. Degradable synthetic electrospun scaffolds are a versatile and promising class of biomaterials for various in situ tissue engineering applications, such as cardiovascular replacements. Functional in situ tissue regeneration depends on the balance between endogenous neo-tissue formation and scaffold degradation. Both these processes are driven by macrophages. Upon invasion into a scaffold, macrophages secrete reactive oxygen species (ROS) and hydrolytic enzymes, contributing to oxidative and enzymatic biomaterial degradation, respectively. This study aims to elucidate the effect of scaffold microarchitecture, i.e., µm-range fiber diameter and fiber alignment, on early macrophage-driven scaffold degradation. Electrospun poly-ε-caprolactone-bisurea (PCL-BU) scaffolds with either 2 or 6 µm (Ø) isotropic or anisotropic fibers were seeded with THP-1 derived human macrophages and cultured in vitro for 4 or 8 days. Our results revealed that macroph age-induced oxidative degradation in particular was dependent on scaffold microarchitecture, with the highest level of ROS-induced lipid peroxidation, NADPH oxidase gene expression and degradation in the 6 µm Ø anisotropic group. Whereas, biochemically polarized macrophages demonstrated a phenotype-specific degradative potential, the observed differences in macrophage degradative potential instigated by the scaffold microarchitecture could not be attributed to either distinct M1 or M2 polarization. This suggests that the scaffold microarchitecture uniquely affects macrophage-driven degradation. These findings emphasize the importance of considering the scaffold microarchitecture in the design of scaffolds for in situ tissue engineering applications and the tailoring of degradation kinetics thereof.

11.
Tissue Eng Part C Methods ; 24(7): 418-429, 2018 07.
Article in English | MEDLINE | ID: mdl-29877143

ABSTRACT

The success of cardiovascular tissue engineering (TE) strategies largely depends on the mechanical environment in which cells develop a neotissue through growth and remodeling processes. This mechanical environment is defined by the local scaffold architecture to which cells adhere, that is, the microenvironment, and by external mechanical cues to which cells respond, that is, hemodynamic loading. The hemodynamic environment of early developing blood vessels consists of both shear stress (due to blood flow) and circumferential stretch (due to blood pressure). Experimental platforms that recapitulate this mechanical environment in a controlled and tunable manner are thus critical for investigating cardiovascular TE. In traditional perfusion bioreactors, however, shear stress and stretch are coupled, hampering a clear delineation of their effects on cell and tissue response. In this study, we uniquely designed a bioreactor that independently combines these two types of mechanical cues in eight parallel vascular grafts. The system is computationally and experimentally validated, through finite element analysis and culture of tissue constructs, respectively, to distinguish various levels of shear stress (up to 5 Pa) and cyclic stretch (up to 1.10). To illustrate the usefulness of the system, we investigated the relative contribution of cyclic stretch (1.05 at 0.5 Hz) and shear stress (1 Pa) to tissue development. Both types of hemodynamic loading contributed to cell alignment, but the contribution of shear stress overruled stretch-induced cell proliferation and matrix (i.e., collagen and glycosaminoglycan) production. At a macroscopic level, cyclic stretching led to the most linear stress-stretch response, which was not related to the presence of shear stress. In conclusion, we have developed a bioreactor that is particularly suited to further unravel the interplay between hemodynamics and in situ TE processes. Using the new system, this work highlights the importance of hemodynamic loading to the study of developing vascular tissues.


Subject(s)
Bioreactors , Mechanotransduction, Cellular , Saphenous Vein/cytology , Stress, Mechanical , Tissue Engineering/methods , Vascular Grafting/methods , Biomechanical Phenomena , Bioprosthesis , Collagen/metabolism , Humans , Saphenous Vein/surgery
12.
NPJ Regen Med ; 2: 18, 2017.
Article in English | MEDLINE | ID: mdl-29302354

ABSTRACT

There is a persistent and growing clinical need for readily-available substitutes for heart valves and small-diameter blood vessels. In situ tissue engineering is emerging as a disruptive new technology, providing ready-to-use biodegradable, cell-free constructs which are designed to induce regeneration upon implantation, directly in the functional site. The induced regenerative process hinges around the host response to the implanted biomaterial and the interplay between immune cells, stem/progenitor cell and tissue cells in the microenvironment provided by the scaffold in the hemodynamic environment. Recapitulating the complex tissue microstructure and function of cardiovascular tissues is a highly challenging target. Therein the scaffold plays an instructive role, providing the microenvironment that attracts and harbors host cells, modulating the inflammatory response, and acting as a temporal roadmap for new tissue to be formed. Moreover, the biomechanical loads imposed by the hemodynamic environment play a pivotal role. Here, we provide a multidisciplinary view on in situ cardiovascular tissue engineering using synthetic scaffolds; starting from the state-of-the art, the principles of the biomaterial-driven host response and wound healing and the cellular players involved, toward the impact of the biomechanical, physical, and biochemical microenvironmental cues that are given by the scaffold design. To conclude, we pinpoint and further address the main current challenges for in situ cardiovascular regeneration, namely the achievement of tissue homeostasis, the development of predictive models for long-term performances of the implanted grafts, and the necessity for stratification for successful clinical translation.

SELECTION OF CITATIONS
SEARCH DETAIL
...