Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 10 10.
Article in English | MEDLINE | ID: mdl-37814951

ABSTRACT

Animals must learn to ignore stimuli that are irrelevant to survival and attend to ones that enhance survival. When a stimulus regularly fails to be associated with an important consequence, subsequent excitatory learning about that stimulus can be delayed, which is a form of nonassociative conditioning called 'latent inhibition'. Honey bees show latent inhibition toward an odor they have experienced without association with food reinforcement. Moreover, individual honey bees from the same colony differ in the degree to which they show latent inhibition, and these individual differences have a genetic basis. To investigate the mechanisms that underly individual differences in latent inhibition, we selected two honey bee lines for high and low latent inhibition, respectively. We crossed those lines and mapped a Quantitative Trait Locus for latent inhibition to a region of the genome that contains the tyramine receptor gene Amtyr1 [We use Amtyr1 to denote the gene and AmTYR1 the receptor throughout the text.]. We then show that disruption of Amtyr1 signaling either pharmacologically or through RNAi qualitatively changes the expression of latent inhibition but has little or slight effects on appetitive conditioning, and these results suggest that AmTYR1 modulates inhibitory processing in the CNS. Electrophysiological recordings from the brain during pharmacological blockade are consistent with a model that AmTYR1 indirectly regulates at inhibitory synapses in the CNS. Our results therefore identify a distinct Amtyr1-based modulatory pathway for this type of nonassociative learning, and we propose a model for how Amtyr1 acts as a gain control to modulate hebbian plasticity at defined synapses in the CNS. We have shown elsewhere how this modulation also underlies potentially adaptive intracolonial learning differences among individuals that benefit colony survival. Finally, our neural model suggests a mechanism for the broad pleiotropy this gene has on several different behaviors.


To efficiently navigate their environment, animals must pay attention to cues associated with events important for survival while also dismissing meaningless signals. The difference between relevant and irrelevant stimuli is learned through a range of complex mechanisms that includes latent inhibition. This process allows animals to ignore irrelevant stimuli, which makes it more difficult for them to associate a cue and a reward if that cue has been unrewarded before. For example, bees will take longer to 'learn' that a certain floral odor signals a feeding opportunity if they first repeatedly encountered the smell when food was absent. Such a mechanism allows organisms to devote more attention to other stimuli which have the potential to be important for survival. The strength of latent inhibition ­ as revealed by how quickly and easily an individual can learn to associate a reward with a previously unrewarded stimulus ­ can differ between individuals. For instance, this is the case in honey bee colonies, where workers have the same mother but may come from different fathers. Such genetic variation can be beneficial for the hive, with high latent inhibition workers being better suited for paying attention to and harvesting known resources, and their low latent inhibition peers for discovering new ones. However, the underlying genetic and neural mechanisms underpinning latent inhibition variability between individuals remained unclear. To investigate this question, Latshaw et al. cross-bred bees from high and low latent inhibition genetic lines. The resulting progeny underwent behavioral tests, and the genome of low and high latent inhibition individuals was screened. These analyses revealed a candidate gene, Amtyr1, which was associated with individual variations in the learning mechanism. Further experiments showed that blocking or disrupting the production the AMTYR1 protein led to altered latent inhibition behavior as well as dampened attention-related processing in recordings from the central nervous system. Based on these findings, a model was proposed detailing how varying degrees of Amtyr1 activation can tune Hebbian plasticity, the brain mechanism that allows organisms to regulate associations between cues and events. Importantly, because of the way AMTYR1 acts in the nervous system, this modulatory role could go beyond latent inhibition, with the associated gene controlling the activity of a range of foraging-related behaviors. Genetic work in model organisms such as fruit flies would allow a more in-depth understanding of such network modulation.


Subject(s)
Smell , Tyramine , Humans , Bees , Animals , Smell/physiology , Learning/physiology , Memory/physiology , Attention
2.
Genome Res ; 23(8): 1235-47, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23636946

ABSTRACT

Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor-binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the "socio-genomes" of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations.


Subject(s)
Ants/genetics , Genome, Insect , Animals , Behavior, Animal , Binding Sites , Conserved Sequence , DNA Methylation , Evolution, Molecular , Gene Expression Regulation , Hymenoptera/genetics , Insect Proteins/genetics , MicroRNAs/genetics , Models, Genetic , Phylogeny , Regulatory Sequences, Nucleic Acid , Sequence Analysis, DNA , Social Behavior , Species Specificity , Synteny , Transcription Factors/genetics
3.
Genome Biol Evol ; 5(2): 439-55, 2013.
Article in English | MEDLINE | ID: mdl-23348040

ABSTRACT

Orphan genes are defined as genes that lack detectable similarity to genes in other species and therefore no clear signals of common descent (i.e., homology) can be inferred. Orphans are an enigmatic portion of the genome because their origin and function are mostly unknown and they typically make up 10% to 30% of all genes in a genome. Several case studies demonstrated that orphans can contribute to lineage-specific adaptation. Here, we study orphan genes by comparing 30 arthropod genomes, focusing in particular on seven recently sequenced ant genomes. This setup allows analyzing a major metazoan taxon and a comparison between social Hymenoptera (ants and bees) and nonsocial Diptera (flies and mosquitoes). First, we find that recently split lineages undergo accelerated genomic reorganization, including the rapid gain of many orphan genes. Second, between the two insect orders Hymenoptera and Diptera, orphan genes are more abundant and emerge more rapidly in Hymenoptera, in particular, in leaf-cutter ants. With respect to intragenomic localization, we find that ant orphan genes show little clustering, which suggests that orphan genes in ants are scattered uniformly over the genome and between nonorphan genes. Finally, our results indicate that the genetic mechanisms creating orphan genes-such as gene duplication, frame-shift fixation, creation of overlapping genes, horizontal gene transfer, and exaptation of transposable elements-act at different rates in insects, primates, and plants. In Formicidae, the majority of orphan genes has their origin in intergenic regions, pointing to a high rate of de novo gene formation or generalized gene loss, and support a recently proposed dynamic model of frequent gene birth and death.


Subject(s)
DNA Transposable Elements/genetics , Diptera/genetics , Evolution, Molecular , Hymenoptera/genetics , Animals , Gene Duplication , Gene Transfer, Horizontal , Genome, Insect , Genomics , Phylogeny
4.
Nature ; 479(7374): 487-92, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22113690

ABSTRACT

The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant-herbivore interactions, and provides unique opportunities for developing novel plant protection strategies.


Subject(s)
Adaptation, Physiological/genetics , Genome/genetics , Herbivory/genetics , Tetranychidae/genetics , Tetranychidae/physiology , Adaptation, Physiological/physiology , Animals , Ecdysterone/analogs & derivatives , Ecdysterone/genetics , Evolution, Molecular , Fibroins/genetics , Gene Expression Regulation , Gene Transfer, Horizontal/genetics , Genes, Homeobox/genetics , Genomics , Herbivory/physiology , Molecular Sequence Data , Molting/genetics , Multigene Family/genetics , Nanostructures/chemistry , Plants/parasitology , Silk/biosynthesis , Silk/chemistry , Transcriptome/genetics
5.
PLoS Genet ; 7(2): e1002007, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21347285

ABSTRACT

Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host-microbe symbioses.


Subject(s)
Ants/physiology , Genome, Insect/genetics , Plant Leaves/physiology , Symbiosis , Animals , Ants/genetics , Arginine/genetics , Arginine/metabolism , Base Sequence , Fungi/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Sequence Analysis, DNA , Serine Proteases/genetics , Serine Proteases/metabolism
6.
BMC Evol Biol ; 11: 8, 2011 Jan 12.
Article in English | MEDLINE | ID: mdl-21226908

ABSTRACT

BACKGROUND: Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. RESULTS: In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. CONCLUSIONS: These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.


Subject(s)
Alismatales/genetics , Aquatic Organisms/genetics , Evolution, Molecular , Marine Biology , Plant Proteins/genetics , Alismatales/classification , Aquatic Organisms/classification , Molecular Sequence Data , Oceans and Seas , Phylogeny
7.
Mar Biotechnol (NY) ; 10(3): 297-309, 2008.
Article in English | MEDLINE | ID: mdl-18239962

ABSTRACT

Global warming is associated with increasing stress and mortality on temperate seagrass beds, in particular during periods of high sea surface temperatures during summer months, adding to existing anthropogenic impacts, such as eutrophication and habitat destruction. We compare several expressed sequence tag (EST) in the ecologically important seagrass Zostera marina (eelgrass) to elucidate the molecular genetic basis of adaptation to environmental extremes. We compared the tentative unigene (TUG) frequencies of libraries derived from leaf and meristematic tissue from a control situation with two experimentally imposed temperature stress conditions and found that TUG composition is markedly different among these conditions (all P < 0.0001). Under heat stress, we find that 63 TUGs are differentially expressed (d.e.) at 25 degrees C compared with lower, no-stress condition temperatures (4 degrees C and 17 degrees C). Approximately one-third of d.e. eelgrass genes were characteristic for the stress response of the terrestrial plant model Arabidopsis thaliana. The changes in gene expression suggest complex photosynthetic adjustments among light-harvesting complexes, reaction center subunits of photosystem I and II, and components of the dark reaction. Heat shock encoding proteins and reactive oxygen scavengers also were identified, but their overall frequency was too low to perform statistical tests. In all conditions, the most abundant transcript (3-15%) was a putative metallothionein gene with unknown function. We also find evidence that heat stress may translate to enhanced infection by protists. A total of 210 TUGs contain one or more microsatellites as potential candidates for gene-linked genetic markers. Data are publicly available in a user-friendly database at http://www.uni-muenster.de/Evolution/ebb/Services/zostera .


Subject(s)
Expressed Sequence Tags , Gene Expression Regulation, Plant , Gene Library , Hot Temperature , Zosteraceae/genetics , Arabidopsis/genetics , Down-Regulation , Genetic Variation , Greenhouse Effect , Heat-Shock Proteins/genetics , Microsatellite Repeats/genetics , Open Reading Frames/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...