Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612641

ABSTRACT

Long COVID (LongC) is associated with a myriad of symptoms including cognitive impairment. We reported at the beginning of the COVID-19 pandemic that neuronal-enriched or L1CAM+ extracellular vesicles (nEVs) from people with LongC contained proteins associated with Alzheimer's disease (AD). Since that time, a subset of people with prior COVID infection continue to report neurological problems more than three months after infection. Blood markers to better characterize LongC are elusive. To further identify neuronal proteins associated with LongC, we maximized the number of nEVs isolated from plasma by developing a hybrid EV Microfluidic Affinity Purification (EV-MAP) technique. We isolated nEVs from people with LongC and neurological complaints, AD, and HIV infection with mild cognitive impairment. Using the OLINK platform that assesses 384 neurological proteins, we identified 11 significant proteins increased in LongC and 2 decreased (BST1, GGT1). Fourteen proteins were increased in AD and forty proteins associated with HIV cognitive impairment were elevated with one decreased (IVD). One common protein (BST1) was decreased in LongC and increased in HIV. Six proteins (MIF, ENO1, MESD, NUDT5, TNFSF14 and FYB1) were expressed in both LongC and AD and no proteins were common to HIV and AD. This study begins to identify differences and similarities in the neuronal response to LongC versus AD and HIV infection.


Subject(s)
Alzheimer Disease , COVID-19 , Extracellular Vesicles , HIV Infections , Humans , Post-Acute COVID-19 Syndrome , Microfluidics , Pandemics
2.
Cells ; 12(18)2023 09 13.
Article in English | MEDLINE | ID: mdl-37759489

ABSTRACT

There is a high clinical unmet need to improve outcomes for pancreatic ductal adenocarcinoma (PDAC) patients, either with the discovery of new therapies or biomarkers that can track response to treatment more efficiently than imaging. We report an innovative approach that will generate renewed interest in using circulating tumor cells (CTCs) to monitor treatment efficacy, which, in this case, used PDAC patients receiving an exploratory new therapy, poly ADP-ribose polymerase inhibitor (PARPi)-niraparib-as a case study. CTCs were enumerated from whole blood using a microfluidic approach that affinity captures epithelial and mesenchymal CTCs using anti-EpCAM and anti-FAPα monoclonal antibodies, respectively. These antibodies were poised on the surface of two separate microfluidic devices to discretely capture each subpopulation for interrogation. The isolated CTCs were enumerated using immunophenotyping to produce a numerical ratio consisting of the number of mesenchymal to epithelial CTCs (denoted "Φ"), which was used as an indicator of response to therapy, as determined using computed tomography (CT). A decreasing value of Φ during treatment was indicative of tumor response to the PARPi and was observed in 88% of the enrolled patients (n = 31). Changes in Φ during longitudinal testing were a better predictor of treatment response than the current standard CA19-9. We were able to differentiate between responders and non-responders using ΔΦ (p = 0.0093) with higher confidence than CA19-9 (p = 0.033). For CA19-9 non-producers, ΔΦ correctly predicted the outcome in 72% of the PDAC patients. Sequencing of the gDNA extracted from affinity-selected CTC subpopulations provided information that could be used for patient enrollment into the clinical trial based on their tumor mutational status in DNA repair genes.


Subject(s)
Carcinoma, Pancreatic Ductal , Neoplastic Cells, Circulating , Pancreatic Neoplasms , Humans , CA-19-9 Antigen , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Treatment Outcome , Pancreatic Neoplasms
3.
Anal Chem ; 95(26): 9892-9900, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37336762

ABSTRACT

We present a chip-based extended nano-Coulter counter (XnCC) that can detect nanoparticles affinity-selected from biological samples with low concentration limit-of-detection that surpasses existing resistive pulse sensors by 2-3 orders of magnitude. The XnCC was engineered to contain 5 in-plane pores each with an effective diameter of 350 nm placed in parallel and can provide high detection efficiency for single particles translocating both hydrodynamically and electrokinetically through these pores. The XnCC was fabricated in cyclic olefin polymer (COP) via nanoinjection molding to allow for high-scale production. The concentration limit-of-detection of the XnCC was 5.5 × 103 particles/mL, which was a 1,100-fold improvement compared to a single in-plane pore device. The application examples of the XnCC included counting affinity selected SARS-CoV-2 viral particles from saliva samples using an aptamer and pillared microchip; the selection/XnCC assay could distinguish the COVID-19(+) saliva samples from those that were COVID-19(-). In the second example, ovarian cancer extracellular vesicles (EVs) were affinity selected using a pillared chip modified with a MUC16 monoclonal antibody. The affinity selection chip coupled with the XnCC was successful in discriminating between patients with high grade serous ovarian cancer and healthy donors using blood plasma as the input sample.


Subject(s)
COVID-19 , Extracellular Vesicles , Nanoparticles , Humans , COVID-19/diagnosis , SARS-CoV-2 , Virion
4.
Anal Chem ; 95(19): 7665-7675, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37071799

ABSTRACT

Extracellular vesicles (EVs) carry RNA cargo that is believed to be associated with the cell-of-origin and thus have the potential to serve as a minimally invasive liquid biopsy marker for supplying molecular information to guide treatment decisions (i.e., precision medicine). We report the affinity isolation of EV subpopulations with monoclonal antibodies attached to the surface of a microfluidic chip that is made from a plastic to allow for high-scale production. The EV microfluidic affinity purification (EV-MAP) chip was used for the isolation of EVs sourced from two-orthogonal cell types and was demonstrated for its utility in a proof-of-concept application to provide molecular subtyping information for breast cancer patients. The orthogonal selection process better recapitulated the epithelial tumor microenvironment by isolating two subpopulations of EVs: EVEpCAM (epithelial cell adhesion molecule, epithelial origin) and EVFAPα (fibroblast activation protein α, mesenchymal origin). The EV-MAP provided recovery >80% with a specificity of 99 ± 1% based on exosomal mRNA (exo-mRNA) and real time-droplet digital polymerase chain reaction results. When selected from the plasma of healthy donors and breast cancer patients, EVs did not differ in size or total RNA mass for both markers. On average, 0.5 mL of plasma from breast cancer patients yielded ∼2.25 ng of total RNA for both EVEpCAM and EVFAPα, while in the case of cancer-free individuals, it yielded 0.8 and 1.25 ng of total RNA from EVEpCAM and EVFAPα, respectively. To assess the potential of these two EV subpopulations to provide molecular information for prognostication, we performed the PAM50 test (Prosigna) on exo-mRNA harvested from each EV subpopulation. Results suggested that EVEpCAM and EVFAPα exo-mRNA profiling using subsets of the PAM50 genes and a novel algorithm (i.e., exo-PAM50) generated 100% concordance with the tumor tissue.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Epithelial Cell Adhesion Molecule/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Extracellular Vesicles/metabolism , Liquid Biopsy , Tumor Microenvironment
5.
J Chromatogr A ; 1683: 463539, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36223665

ABSTRACT

Over the last 30-years, microchip electrophoresis and its applications have expanded due to the benefits it offers. Nanochip electrophoresis, on the other hand, is viewed as an evolving area of electrophoresis because it offers some unique advantages not associated with microchip electrophoresis. These advantages arise from unique phenomena that occur in the nanometer domain not readily apparent in the microscale domain due to scale-dependent effects. Scale-dependent effects associated with nanochip electrophoresis includes high surface area-to-volume ratio, electrical double layer overlap generating parabolic flow even for electrokinetic pumping, concentration polarization, transverse electromigration, surface charge dominating flow, and surface roughness. Nanochip electrophoresis devices consist of channels with dimensions ranging from 1 to 1000 nm including classical (1-100 nm) and extended (100 nm - 1000 nm) nanoscale devices. In this review, we highlight scale-dependent phenomena associated with nanochip electrophoresis and the utilization of those phenomena to provide unique biomolecular separations that are not possible with microchip electrophoresis. We will also review the range of materials used for nanoscale separations and the implication of material choice for the top-down fabrication and operation of these devices. We will also provide application examples of nanochip electrophoresis for biomolecule separations with an emphasis on nano-electrophoresis (nEP) and nano-electrochromatography (nEC).


Subject(s)
Electrophoresis, Microchip , Electrophoresis, Microchip/methods
6.
Sci Adv ; 8(39): eabn9665, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36170362

ABSTRACT

We report a microfluidic assay to select active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral particles (VPs), which were defined as intact particles with an accessible angiotensin-converting enzyme 2 receptor binding domain (RBD) on the spike (S) protein, from clinical samples. Affinity selection of SARS-CoV-2 particles was carried out using injection molded microfluidic chips, which allow for high-scale production to accommodate large-scale screening. The microfluidic contained a surface-bound aptamer directed against the virus's S protein RBD to affinity select SARS-CoV-2 VPs. Following selection (~94% recovery), the VPs were released from the chip's surface using a blue light light-emitting diode (89% efficiency). Selected SARS-CoV-2 VP enumeration was carried out using reverse transcription quantitative polymerase chain reaction. The VP selection assay successfully identified healthy donors (clinical specificity = 100%) and 19 of 20 patients with coronavirus disease 2019 (COVID-19) (95% sensitivity). In 15 patients with COVID-19, the presence of active SARS-CoV-2 VPs was found. The chip can be reprogrammed for any VP or exosomes by simply changing the affinity agent.

7.
Electroanalysis ; 34(12): 1961-1975, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37539083

ABSTRACT

We report an in-plane extended nanopore Coulter counter (XnCC) chip fabricated in a thermoplastic via imprinting. The fabrication of the sensor utilized both photolithography and focused ion beam milling to make the microfluidic network and the in-plane pore sensor, respectively, in Si from which UV resin stamps were generated followed by thermal imprinting to produce the final device in the appropriate plastic (cyclic olefin polymer, COP). As an example of the utility of this in-plane extended nanopore sensor, we enumerated SARS-CoV-2 viral particles (VPs) affinity-selected from saliva and extracellular vesicles (EVs) affinity-selected from plasma samples secured from mouse models exposed to different ionizing radiation doses.

8.
Viruses ; 13(10)2021 10 14.
Article in English | MEDLINE | ID: mdl-34696492

ABSTRACT

African swine fever (ASF), caused by a DNA virus (ASFV) belonging to genus Asfivirus of the Asfarviridae family, is one of the most threatening diseases of suids. During last few years, it has spread among populations of wild boars and pigs in countries of Eastern and Central Europe, causing huge economical losses. While local ASF occurrence is positively correlated with wild boar density, ecology of this species (social structure, movement behavior) constrains long-range disease transmission. Thus, it has been speculated that carnivores known for high daily movement and long-range dispersal ability, such as the wolf (Canis lupus), may be indirect ASFV vectors. To test this, we analyzed 62 wolf fecal samples for the presence of ASFV DNA, collected mostly in parts of Poland declared as ASF zones. This dataset included 20 samples confirmed to contain wild boar remains, 13 of which were collected near places where GPS-collared wolves fed on dead wild boars. All analyzed fecal samples were ASFV-negative. On the other hand, eight out of nine wild boar carcasses that were fed on by telemetrically studied wolves were positive. Thus, our results suggest that when wolves consume meat of ASFV-positive wild boars, the virus does not survive the passage through intestinal tract. Additionally, wolves may limit ASFV transmission by removing infectious carrion. We speculate that in areas where telemetric studies on large carnivores are performed, data from GPS collars could be used to enhance efficiency of carcass search, which is one of the main preventive measures to constrain ASF spread.


Subject(s)
African Swine Fever Virus , African Swine Fever/virology , Feces/virology , Wolves/virology , African Swine Fever/transmission , Animals , Asfarviridae , Male , Poland , Social Structure , Swine
9.
ACS Sens ; 6(5): 1831-1839, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33938745

ABSTRACT

Liquid biopsies are becoming popular for managing a variety of diseases due to the minimally invasive nature of their acquisition, thus potentially providing better outcomes for patients. Circulating tumor cells (CTCs) are among the many different biomarkers secured from a liquid biopsy, and a number of efficient platforms for their isolation and enrichment from blood have been reported. However, many of these platforms require manual sample handling, which can generate difficulties when translating CTC assays into the clinic due to potential sample loss, contamination, and the need for highly specialized operators. We report a system modularity chip for the analysis of rare targets (SMART-Chip) composed of three task-specific modules that can fully automate processing of CTCs. The modules were used for affinity selection of the CTCs from peripheral blood with subsequent photorelease, simultaneous counting, and viability determinations of the CTCs and staining/imaging of the CTCs for immunophenotyping. The modules were interconnected to a fluidic motherboard populated with valves, interconnects, pneumatic control channels, and a fluidic network. The SMART-Chip components were made from thermoplastics via microreplication, which lowers the cost of production making it amenable to clinical implementation. The utility of the SMART-Chip was demonstrated by processing blood samples secured from colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC) patients. We were able to affinity-select EpCAM expressing CTCs with high purity (0-3 white blood cells/mL of blood), enumerate the selected cells, determine their viability, and immunophenotype the cells. The assay could be completed in <4 h, while manual processing required >8 h.


Subject(s)
Neoplastic Cells, Circulating , Pancreatic Neoplasms , Cell Count , Cell Separation , Humans , Liquid Biopsy , Pancreatic Neoplasms/diagnosis
10.
Commun Biol ; 3(1): 613, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106557

ABSTRACT

Currently there is no in vitro diagnostic test for acute ischemic stroke (AIS), yet rapid diagnosis is crucial for effective thrombolytic treatment. We previously demonstrated the utility of CD8(+) T-cells' mRNA expression for AIS detection; however extracellular vesicles (EVs) were not evaluated as a source of mRNA for AIS testing. We now report a microfluidic device for the rapid and efficient affinity-enrichment of CD8(+) EVs and subsequent EV's mRNA analysis using droplet digital PCR (ddPCR). The microfluidic device contains a dense array of micropillars modified with anti-CD8α monoclonal antibodies that enriched 158 ± 10 nm sized EVs at 4.3 ± 2.1 × 109 particles/100 µL of plasma. Analysis of mRNA from CD8(+) EVs and their parental T-cells revealed correlation in the expression for AIS-specific genes in both cell lines and healthy donors. In a blinded study, 80% test positivity for AIS patients and controls was revealed with a total analysis time of 3.7 h.


Subject(s)
Extracellular Vesicles/physiology , Gene Expression Regulation/physiology , Ischemic Stroke/diagnosis , Lab-On-A-Chip Devices , RNA, Messenger/metabolism , Biomarkers , Brain Ischemia/metabolism , Cell Line , Humans , RNA, Messenger/genetics , T-Lymphocytes
11.
Expert Rev Mol Diagn ; 20(8): 771-788, 2020 08.
Article in English | MEDLINE | ID: mdl-32500751

ABSTRACT

INTRODUCTION: There is a short time window (4.5 h) for the effective treatment of acute ischemic stroke (AIS), which uses recombinant tissue plasminogen activator (rt-PA). Unfortunately, this short therapeutic timeframe is a contributing factor to the relatively small number of patients (~7%) that receive rt-PA. While neuroimaging is the major diagnostic for AIS, more timely decisions could be made using a molecular diagnostic. AREAS COVERED: In this review, we survey neuroimaging techniques used to diagnose stroke and their limitations. We also highlight the potential of various molecular/cellular biomarkers, especially peripheral blood-based (i.e. liquid biopsy) biomarkers, for diagnosing stroke to allow for precision decisions on managing stroke in a timely manner. Both protein and nucleic acid molecular biomarkers are reviewed. In particular, mRNA markers are discussed for AIS and hemorrhagic stroke diagnosis sourced from both cells and extracellular vesicles. EXPERT OPINION: While there are a plethora of molecular markers for stroke diagnosis that have been reported, they have yet to be FDA-cleared. Possible reasons include the inability for these markers to appear in sufficient quantities for highly sensitive clinical decisions within the rt-PA therapeutic time.


Subject(s)
Biomarkers , Liquid Biopsy/methods , Stroke/diagnosis , Blood Cells/metabolism , Blood-Brain Barrier/metabolism , Disease Management , Disease Susceptibility , Gene Expression Profiling , Humans , Multimodal Imaging/methods , Prognosis , Severity of Illness Index , Stroke/epidemiology , Stroke/etiology , Stroke/therapy , Transcriptome , Treatment Outcome
12.
Chem Commun (Camb) ; 56(29): 4098-4101, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32163053

ABSTRACT

We detail a heterobifunctional, 7-aminocoumarin photocleavable (PC) linker with unique properties to covalently attach Abs to surfaces and subsequently release them with visible light (400-450 nm). The PC linker allowed rapid (2 min) and efficient (>90%) release of CTCs and EVs without damaging their molecular cargo.


Subject(s)
Antibodies, Monoclonal/chemistry , Coumarins/chemistry , Extracellular Vesicles , Neoplastic Cells, Circulating , Antibodies, Monoclonal/radiation effects , Cell Line, Tumor , Cell Survival , Coumarins/radiation effects , Humans , Light , Liquid Biopsy , Microfluidics
13.
Cells ; 9(2)2020 02 24.
Article in English | MEDLINE | ID: mdl-32102446

ABSTRACT

The role of circulating plasma cells (CPCs) and circulating leukemic cells (CLCs) as biomarkers for several blood cancers, such as multiple myeloma and leukemia, respectively, have recently been reported. These markers can be attractive due to the minimally invasive nature of their acquisition through a blood draw (i.e., liquid biopsy), negating the need for painful bone marrow biopsies. CPCs or CLCs can be used for cellular/molecular analyses as well, such as immunophenotyping or fluorescence in situ hybridization (FISH). FISH, which is typically carried out on slides involving complex workflows, becomes problematic when operating on CLCs or CPCs due to their relatively modest numbers. Here, we present a microfluidic device for characterizing CPCs and CLCs using immunofluorescence or FISH that have been enriched from peripheral blood using a different microfluidic device. The microfluidic possessed an array of cross-channels (2-4 µm in depth and width) that interconnected a series of input and output fluidic channels. Placing a cover plate over the device formed microtraps, the size of which was defined by the width and depth of the cross-channels. This microfluidic chip allowed for automation of immunofluorescence and FISH, requiring the use of small volumes of reagents, such as antibodies and probes, as compared to slide-based immunophenotyping and FISH. In addition, the device could secure FISH results in <4 h compared to 2-3 days for conventional FISH.


Subject(s)
B-Lymphocytes/immunology , Cytogenetic Analysis/instrumentation , Immunophenotyping/instrumentation , In Situ Hybridization, Fluorescence/instrumentation , Lab-On-A-Chip Devices , Microfluidics/instrumentation , Molecular Diagnostic Techniques/instrumentation , Neoplastic Cells, Circulating/immunology , Blood Donors , Cell Line , Cytogenetic Analysis/methods , Humans , Immunophenotyping/methods , In Situ Hybridization, Fluorescence/methods , Liquid Biopsy , Microfluidics/methods , Molecular Diagnostic Techniques/methods , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
14.
Anal Chem ; 92(1): 105-131, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31808677
15.
Analyst ; 145(5): 1677-1686, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31867587

ABSTRACT

Coulter counters are used for counting particles and biological cells. Most Coulter counters are designed to analyze a sample without the ability to pre-process the sample prior to counting. For the analysis of rare cells, such as circulating tumor cells (CTCs), it is not uncommon to require enrichment before counting due to the modest throughput of µCCs and the high abundance of interfering cells, such as blood cells. We report a microfluidic-based Coulter Counter (µCC) fabricated using simple, low-cost techniques for counting rare cells that can be interfaced to sample pre- and/or post-processing units. In the current work, a microfluidic device for the affinity-based enrichment of CTCs from whole blood into a relatively small volume of ∼10 µL was interfaced to the µCC to allow for exhaustive counting of single CTCs following release of the CTCs from the enrichment chip. When integrated to the CTC affinity enrichment chip, the µCC could count the CTCs without loss and the cells could be collected for downstream molecular profiling or culturing if required. The µCC sensor counting efficiency was >93% and inter-chip variability was ∼1%.


Subject(s)
Breast Neoplasms/pathology , Cell Separation/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Multiple Myeloma/pathology , Neoplastic Cells, Circulating/pathology , Female , Humans , Tumor Cells, Cultured
16.
Lab Chip ; 18(22): 3459-3470, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30339164

ABSTRACT

Cell-free DNA (cfDNA) is a liquid biopsy marker that can carry signatures (i.e., mutations) associated with certain pathological conditions. Therefore, the extraction of cfDNA from a variety of clinical samples can be an effective and minimally invasive source of markers for disease detection and subsequent management. In the oncological diseases, circulating tumor DNA (ctDNA), a cfDNA sub-class, can carry clinically actionable mutations and coupled with next generation sequencing or other mutation detection methods provide a venue for effective in vitro diagnostics. However, cfDNA mutational analyses require high quality inputs. This necessitates extraction platforms that provide high recovery over the entire ctDNA size range (50 → 150 bp) with minimal interferences (i.e., co-extraction of genomic DNA), and high reproducibility with a simple workflow. Herein, we present a novel microfluidic solid-phase extraction device (µSPE) consisting of a plastic chip that is activated with UV/O3 to generate surface-confined carboxylic acid functionalities for the µSPE of cfDNA. The µSPE uses an immobilization buffer (IB) consisting of polyethylene glycol and salts that induce cfDNA condensation onto the activated plastic microfluidic surface. The µSPE consists of an array of micropillars to increase extraction bed load (scalable to loads >700 ng of cfDNA) and can be produced at low-cost using replication-based techniques. The entire µSPE can be fabricated in a single molding step negating the need for adding additional extraction supports to the device simplifying production and keeping device and assay cost low. The µSPE allowed for recoveries >90% of model cfDNA fragments across a range of sizes (100-700 bp) and even the ability to extract efficiently short cfDNA fragments (50 bp, >70%). In addition, the composition of the IB allowed for reducing the interference of co-extracted genomic DNA. We demonstrated the clinical utility of the µSPE by quantifying the levels of cfDNA in healthy donors and patients with non-small-cell lung and colorectal cancers. µSPE extracted cfDNA from plasma samples was also subjected to a ligase detection reaction (LDR) for determining the presence of mutations in the KRAS gene for colorectal and non-small cell lung cancer patients.


Subject(s)
Cell-Free Nucleic Acids/isolation & purification , Lab-On-A-Chip Devices , Solid Phase Extraction/instrumentation , Cell Line, Tumor , Cell-Free Nucleic Acids/blood , Equipment Design , Humans , Plastics
17.
Cancer J ; 24(2): 93-103, 2018.
Article in English | MEDLINE | ID: mdl-29601336

ABSTRACT

In the context of oncology, liquid biopsies consist of harvesting cancer biomarkers, such as circulating tumor cells, tumor-derived cell-free DNA, and extracellular vesicles, from bodily fluids. These biomarkers provide a source of clinically actionable molecular information that can enable precision medicine. Herein, we review technologies for the molecular profiling of liquid biopsy markers with special emphasis on the analysis of low abundant markers from mixed populations.


Subject(s)
Neoplasms/pathology , Biomarkers, Tumor/metabolism , Humans , Liquid Biopsy/methods , Neoplasms/metabolism , Precision Medicine/methods
18.
Integr Biol (Camb) ; 10(2): 82-91, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29372735

ABSTRACT

Blood samples from patients with plasma cell disorders were analysed for the presence of circulating plasma cells (CPCs) using a microfluidic device modified with monoclonal anti-CD138 antibodies. CPCs were immuno-phenotyped using a CD38/CD56/CD45 panel and identified in 78% of patients with monoclonal gammopathy of undetermined significance (MGUS), all patients with smouldering and symptomatic multiple myeloma (MM), and none in the controls. The burden of CPCs was higher in patients with symptomatic MM compared with MGUS and smouldering MM (p < 0.05). FISH analysis revealed the presence of chromosome 13 deletions in CPCs that correlated with bone marrow results. Point mutations in KRAS were identified, including different mutations from sub-clones derived from the same patient. The microfluidic assay represents a highly sensitive method for enumerating CPCs and allows for the cytogenetic and molecular characterization of CPCs.


Subject(s)
Lab-On-A-Chip Devices , Monoclonal Gammopathy of Undetermined Significance/blood , Multiple Myeloma/blood , Plasma Cells/pathology , Smoldering Multiple Myeloma/blood , Antibodies, Monoclonal , Cell Separation/instrumentation , Cell Separation/methods , Clone Cells/pathology , Equipment Design , Humans , In Situ Hybridization, Fluorescence , Microfluidics/methods , Monoclonal Gammopathy of Undetermined Significance/genetics , Monoclonal Gammopathy of Undetermined Significance/immunology , Multiple Myeloma/genetics , Multiple Myeloma/immunology , Mutation , Plasma Cells/immunology , Proto-Oncogene Proteins p21(ras)/genetics , Smoldering Multiple Myeloma/genetics , Smoldering Multiple Myeloma/immunology , Syndecan-1/blood
19.
Chem Soc Rev ; 46(14): 4245-4280, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28632258

ABSTRACT

We present a critical review of microfluidic technologies and material effects on the analyses of circulating tumour cells (CTCs) selected from the peripheral blood of cancer patients. CTCs are a minimally invasive source of clinical information that can be used to prognose patient outcome, monitor minimal residual disease, assess tumour resistance to therapeutic agents, and potentially screen individuals for the early diagnosis of cancer. The performance of CTC isolation technologies depends on microfluidic architectures, the underlying principles of isolation, and the choice of materials. We present a critical review of the fundamental principles used in these technologies and discuss their performance. We also give context to how CTC isolation technologies enable downstream analysis of selected CTCs in terms of detecting genetic mutations and gene expression that could be used to gain information that may affect patient outcome.


Subject(s)
Cell Separation/methods , Microfluidic Analytical Techniques , Neoplasms/diagnosis , Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Humans , Neoplasms/genetics
20.
Article in English | MEDLINE | ID: mdl-29657983

ABSTRACT

Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges.

SELECTION OF CITATIONS
SEARCH DETAIL
...