Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Math Biol ; 73(6): 1171-201, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20556530

ABSTRACT

In this paper, we present a mathematical model describing the effect of polar lipids, excreted by glands in the eyelid and present on the surface of the tear film, on the evolution of a pre-corneal tear film. We aim to explain the interesting experimentally observed phenomenon that the tear film continues to move upward even after the upper eyelid has become stationary. The polar lipid is an insoluble surface species that locally alters the surface tension of the tear film. In the lubrication limit, the model reduces to two coupled non-linear partial differential equations for the film thickness and the concentration of lipid. We solve the system numerically and observe that increasing the concentration of the lipid increases the flow of liquid up the eye. We further exploit the size of the parameters in the problem to explain the initial evolution of the system.


Subject(s)
Lipids/physiology , Models, Biological , Tears/physiology , Computer Simulation , Humans , Surface Tension
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(1 Pt 2): 016301, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18351928

ABSTRACT

Thin films of viscous fluids coating hydrophobic substrates are unstable to dewetting instabilities, and long-time evolution leads to the formation of an array of near-equilibrium droplets connected by ultrathin fluid layers. In the absence of gravity, previous use of lubrication theory has shown that coarsening dynamics will ensue-the system will evolve by successively eliminating small drops to yield fewer larger drops. While gravity has only a weak influence on the initial thin film, we show that it has a significant influence on the later stages of the coarsening dynamics, dramatically slowing the rate of coarsening for large drops. Small drops are relatively unaffected, but as coarsening progresses, these aggregate into larger drops whose shape and dynamics are dominated by gravity. The change in the mean drop shape causes a corresponding gradual transition from power-law coarsening to a logarithmic behavior.

3.
Phys Rev Lett ; 95(12): 127801, 2005 Sep 16.
Article in English | MEDLINE | ID: mdl-16197111

ABSTRACT

We compare the flow behavior of liquid polymer films on silicon wafers coated with either octadecyl-(OTS) or dodecyltrichlorosilane (DTS). Our experiments show that dewetting on DTS is significantly faster than on OTS. We argue that this is tied to the difference in the solid/liquid friction. As the film dewets, the profile of the rim advancing into the undisturbed film is monotonically decaying on DTS but has an oscillatory structure on OTS. For the first time we can describe this transition in terms of a lubrication model with a Navier-slip condition for the flow of a viscous Newtonian liquid.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(1 Pt 2): 016302, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12636597

ABSTRACT

Lubrication theory for unstable thin liquid films on solid substrates is used to model the coarsening dynamics in the long-time behavior of dewetting films. The dominant physical effects that drive the fluid dynamics in dewetting films are surface tension and intermolecular interactions with the solid substrate. Instabilities in these films lead to rupture and other morphological changes that promote nonuniformity in the films. Following the initial instabilities, the films break up into near-equilibrium droplets connected by an ultrathin film. For longer times, the fluid will undergo a coarsening process in which droplets both move and exchange mass on slow time scales. The dynamics of this coarsening process will be obtained through the asymptotic reduction of the long-wave PDE governing the thin film to a set of ODEs for the evolution of the droplets. From this, a scaling law that governs the coarsening rate is derived.

SELECTION OF CITATIONS
SEARCH DETAIL