Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(9): e0290740, 2023.
Article in English | MEDLINE | ID: mdl-37703232

ABSTRACT

Sea turtles are threatened with extinction around the world and rely on sandy beaches for laying their eggs. To protect eggs and locate them for calculation of reproductive success, beach surveyors must find the exact placement of each clutch. Eggs may be buried up to one meter deep under a nest mound several square meters in area. To locate sea turtle eggs, beach surveyors might spend hours searching for these eggs hidden in the sand, especially for difficult-to-locate leatherback (Dermochelys coriacea) and green turtle (Chelonia mydas) eggs. Scent-detection dogs (Canis lupus familiaris) are a novel tool that could provide a means to more accurately identify nests and efficiently locate eggs that need assessment, protection, or relocation. We assessed the effectiveness and feasibility of using a detection dog to locate sea turtle eggs buried in beach sand as compared to the traditional method using human beach surveyors. The detection dog was significantly more accurate in detecting loggerhead sea turtle (Caretta caretta) eggs and more efficient (less time spent and fewer holes dug) in assisting with locating the eggs. This case study presents results on the performance of one detection dog only, and additional research is needed with multiple detection dogs and handlers.


Subject(s)
Turtles , Working Dogs , Animals , Dogs , Florida , Odorants , Sand , Humans
2.
Data Brief ; 47: 108984, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36860409

ABSTRACT

We measured the relative abundance of sea turtles using standardized transect surveys conducted during the summer and fall of 2013 in neritic waters surrounding the Mississippi River delta in Louisiana, USA. Data comprise sea turtle locations, observation circumstances, and environmental covariates recorded at the beginning of each transect and at the time of each turtle observation. Turtles were recorded by species and size class, as well as location in the water column and the distance the turtle was from the transect line. Transects were performed on an 8.2 meter vessel with two observers atop a 4.5 meter elevated platform, with vessel speed standardized at ∼15 km/hr. These data are the first to describe relative abundance of sea turtles observed from small vessels in this region. Detection of turtles <45 cm SSCL and data detail are greater than aerial surveys. The data serve to inform resource managers and researchers regarding these protected marine species.

3.
Animals (Basel) ; 11(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803547

ABSTRACT

Chelonid alphaherpesviruses 5 and 6 (ChHV5 and ChHV6) are viruses that affect wild sea turtle populations. ChHV5 is associated with the neoplastic disease fibropapillomatosis (FP), which affects green turtles (Chelonia mydas) in panzootic proportions. ChHV6 infection is associated with lung-eye-trachea disease (LETD), which has only been observed in maricultured sea turtles, although antibodies to ChHV6 have been detected in free-ranging turtles. To better understand herpesvirus prevalence and host immunity in various green turtle foraging aggregations in Florida, USA, our objectives were to compare measures of innate and adaptive immune function in relation to (1) FP tumor presence and severity, and (2) ChHV5 and ChHV6 infection status. Free-ranging, juvenile green turtles (N = 45) were captured and examined for external FP tumors in Florida's Big Bend, Indian River Lagoon, and Lake Worth Lagoon. Blood samples were collected upon capture and analyzed for ChHV5 and ChHV6 DNA, antibodies to ChHV5 and ChHV6, in vitro lymphocyte proliferation using a T-cell mitogen (concanavalin A), and natural killer cell activity. Despite an overall high FP prevalence (56%), ChHV5 DNA was only observed in one individual, whereas 20% of turtles tested positive for antibodies to ChHV5. ChHV6 DNA was not observed in any animals and only one turtle tested positive for ChHV6 antibodies. T-cell proliferation was not significantly related to FP presence, tumor burden, or ChHV5 seroprevalence; however, lymphocyte proliferation in response to concanavalin A was decreased in turtles with severe FP (N = 3). Lastly, green turtles with FP (N = 9) had significantly lower natural killer cell activity compared to FP-free turtles (N = 5). These results increase our understanding of immune system effects related to FP and provide evidence that immunosuppression occurs after the onset of FP disease.

4.
PLoS One ; 12(5): e0177642, 2017.
Article in English | MEDLINE | ID: mdl-28493980

ABSTRACT

The gut microbiome of herbivorous animals consists of organisms that efficiently digest the structural carbohydrates of ingested plant material. Green turtles (Chelonia mydas) provide an interesting model of change in these microbial communities because they undergo a pronounced shift from a surface-pelagic distribution and omnivorous diet to a neritic distribution and herbivorous diet. As an alternative to direct sampling of the gut, we investigated the cloacal microbiomes of juvenile green turtles before and after recruitment to neritic waters to observe any changes in their microbial community structure. Cloacal swabs were taken from individual turtles for analysis of the 16S rRNA gene sequences using Illumina sequencing. One fecal sample was also obtained, allowing for a preliminary comparison with the bacterial community of the cloaca. We found significant variation in the juvenile green turtle bacterial communities between pelagic and neritic habitats, suggesting that environmental and dietary factors support different bacterial communities in green turtles from these habitats. This is the first study to characterize the cloacal microbiome of green turtles in the context of their ontogenetic shifts, which could provide valuable insight into the origins of their gut bacteria and how the microbial community supports their shift to herbivory.


Subject(s)
Ecosystem , Microbiota , Turtles/microbiology , Animals , Biodiversity , Body Size , Cloaca/microbiology , Cluster Analysis , Geography , Gulf of Mexico , Sequence Analysis, RNA
5.
PLoS One ; 9(12): e114171, 2014.
Article in English | MEDLINE | ID: mdl-25517946

ABSTRACT

In order to provide information to better inform management decisions and direct further research, vessel-based visual transects, snorkel transects, and in-water capture techniques were used to characterize hawksbill sea turtles in the shallow marine habitats of a Marine Protected Area (MPA), the Key West National Wildlife Refuge in the Florida Keys. Hawksbills were found in hardbottom and seagrass dominated habitats throughout the Refuge, and on man-made rubble structures in the Northwest Channel near Cottrell Key. Hawksbills captured (N = 82) were exclusively juveniles and subadults with a straight standard carapace length (SSCL) ranging from 21.4 to 69.0cm with a mean of 44.1 cm (SD = 10.8). Somatic growth rates were calculated from 15 recaptured turtles with periods at large ranging from 51 to 1188 days. Mean SSCL growth rate was 7.7 cm/year (SD = 4.6). Juvenile hawksbills (<50 cm SSCL) showed a significantly higher growth rate (9.2 cm/year, SD = 4.5, N = 11) than subadult hawksbills (50-70 cm SSCL, 3.6 cm/year, SD = 0.9, N = 4). Analysis of 740 base pair mitochondrial control region sequences from 50 sampled turtles yielded 12 haplotypes. Haplotype frequencies were significantly different compared to four other Caribbean juvenile foraging aggregations, including one off the Atlantic coast of Florida. Many-to-one mixed stock analysis indicated Mexico as the primary source of juveniles in the region and also suggested that the Refuge may serve as important developmental habitat for the Cuban nesting aggregation. Serum testosterone radioimmunoassay results from 33 individuals indicated a female biased sex ratio of 3.3 females: 1 male for hawksbills in the Refuge. This assemblage of hawksbills is near the northern limit of the species range, and is one of only two such assemblages described in the waters of the continental United States. Since this assemblage resides in an MPA with intensive human use, basic information on the assemblage is vital to resource managers charged with conservation and species protection in the MPA.


Subject(s)
Ecosystem , Turtles/growth & development , Animals , Body Size , Endangered Species , Female , Florida , Haplotypes , Male , Sex Ratio , Testosterone/blood , Turtles/blood , Turtles/genetics
6.
PLoS One ; 8(12): e81097, 2013.
Article in English | MEDLINE | ID: mdl-24339901

ABSTRACT

A recent analysis suggested that historical climate forcing on the oceanic habitat of neonate sea turtles explained two-thirds of interannual variability in contemporary loggerhead (Caretta caretta) sea turtle nest counts in Florida, where nearly 90% of all nesting by this species in the Northwest Atlantic Ocean occurs. Here, we show that associations between annual nest counts and climate conditions decades prior to nest counts and those conditions one year prior to nest counts were not significantly different. Examination of annual nest count and climate data revealed that statistical artifacts influenced the reported 31-year lag association with nest counts. The projected importance of age 31 neophytes to annual nest counts between 2020 and 2043 was modeled using observed nest counts between 1989 and 2012. Assuming consistent survival rates among cohorts for a 5% population growth trajectory and that one third of the mature female population nests annually, the 41% decline in annual nest counts observed during 1998-2007 was not projected for 2029-2038. This finding suggests that annual nest count trends are more influenced by remigrants than neophytes. Projections under the 5% population growth scenario also suggest that the Peninsular Recovery Unit could attain the demographic recovery criteria of 106,100 annual nests by 2027 if nest counts in 2019 are at least comparable to 2012. Because the first year of life represents only 4% of the time elapsed through age 31, cumulative survival at sea across decades explains most cohort variability, and thus, remigrant population size. Pursuant to the U.S. Endangered Species Act, staggered implementation of protection measures for all loggerhead life stages has taken place since the 1970s. We suggest that the 1998-2007 nesting decline represented a lagged perturbation response to historical anthropogenic impacts, and that subsequent nest count increases since 2008 reflect a potential recovery response.


Subject(s)
Climate , Nesting Behavior , Reptiles , Animal Migration , Animals , Atlantic Ocean , Female , Male , Models, Statistical , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...