Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 10(4): 1286-1297, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38556981

ABSTRACT

Malaria is caused by parasites of the Plasmodium genus and remains one of the most pressing human health problems. The spread of parasites resistant to or partially resistant to single or multiple drugs, including frontline antimalarial artemisinin and its derivatives, poses a serious threat to current and future malaria control efforts. In vitro drug assays are important for identifying new antimalarial compounds and monitoring drug resistance. Due to its robustness and ease of use, the [3H]-hypoxanthine incorporation assay is still considered a gold standard and is widely applied, despite limited sensitivity and the dependence on radioactive material. Here, we present a first-of-its-kind chemiluminescence-based antimalarial drug screening assay. The effect of compounds on P. falciparum is monitored by using a dioxetane-based substrate (AquaSpark ß-D-galactoside) that emits high-intensity luminescence upon removal of a protective group (ß-D-galactoside) by a transgenic ß-galactosidase reporter enzyme. This biosensor enables highly sensitive, robust, and cost-effective detection of asexual, intraerythrocytic P. falciparum parasites without the need for parasite enrichment, washing, or purification steps. We are convinced that the ultralow detection limit of less than 100 parasites of the presented biosensor system will become instrumental in malaria research, including but not limited to drug screening.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Malaria , Humans , Antimalarials/pharmacology , Plasmodium falciparum , Malaria/drug therapy , Malaria, Falciparum/parasitology , Folic Acid Antagonists/pharmacology , Galactosides/pharmacology , Galactosides/therapeutic use
2.
Nat Commun ; 12(1): 3196, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045457

ABSTRACT

Malaria parasites have a complex life cycle featuring diverse developmental strategies, each uniquely adapted to navigate specific host environments. Here we use single-cell transcriptomics to illuminate gene usage across the transmission cycle of the most virulent agent of human malaria - Plasmodium falciparum. We reveal developmental trajectories associated with the colonization of the mosquito midgut and salivary glands and elucidate the transcriptional signatures of each transmissible stage. Additionally, we identify both conserved and non-conserved gene usage between human and rodent parasites, which point to both essential mechanisms in malaria transmission and species-specific adaptations potentially linked to host tropism. Together, the data presented here, which are made freely available via an interactive website, provide a fine-grained atlas that enables intensive investigation of the P. falciparum transcriptional journey. As well as providing insights into gene function across the transmission cycle, the atlas opens the door for identification of drug and vaccine targets to stop malaria transmission and thereby prevent disease.


Subject(s)
Anopheles/parasitology , Life Cycle Stages/genetics , Malaria, Falciparum/transmission , Mosquito Vectors/parasitology , Plasmodium falciparum/genetics , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Female , Host-Parasite Interactions/genetics , Humans , Life Cycle Stages/drug effects , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Male , Plasmodium falciparum/drug effects , Plasmodium falciparum/pathogenicity , RNA-Seq , Single-Cell Analysis , Species Specificity , Transcriptome/drug effects
3.
Front Cell Infect Microbiol ; 11: 604129, 2021.
Article in English | MEDLINE | ID: mdl-33732658

ABSTRACT

The crossing of the mosquito midgut epithelium by the malaria parasite motile ookinete form represents the most extreme population bottleneck in the parasite life cycle and is a prime target for transmission blocking strategies. However, we have little understanding of the clonal variation that exists in a population of ookinetes in the vector, partially because the parasites are difficult to access and are found in low numbers. Within a vector, variation may result as a response to specific environmental cues or may exist independent of those cues as a potential bet-hedging strategy. Here we use single-cell RNA-seq to profile transcriptional variation in Plasmodium berghei ookinetes across different vector species, and between and within individual midguts. We then compare our results to low-input transcriptomes from individual Anopheles coluzzii midguts infected with the human malaria parasite Plasmodium falciparum. Although the vast majority of transcriptional changes in ookinetes are driven by development, we have identified candidate genes that may be responding to environmental cues or are clonally variant within a population. Our results illustrate the value of single-cell and low-input technologies in understanding clonal variation of parasite populations.


Subject(s)
Plasmodium berghei/genetics , RNA, Small Cytoplasmic , Animals , Mosquito Vectors , RNA-Seq , Single-Cell Analysis
4.
Article in English | MEDLINE | ID: mdl-33139275

ABSTRACT

Resistance to artemisinin-based combination therapy (ACT) in the Plasmodium falciparum parasite is threatening to reverse recent gains in reducing global deaths from malaria. While resistance manifests as delayed parasite clearance in patients, the phenotype can only spread geographically via the sexual stages and mosquito transmission. In addition to their asexual killing properties, artemisinin and its derivatives sterilize sexual male gametocytes. Whether resistant parasites overcome this sterilizing effect has not, however, been fully tested. Here, we analyzed P. falciparum clinical isolates from the Greater Mekong Subregion, each demonstrating delayed clinical clearance and known resistance-associated polymorphisms in the Kelch13 (PfK13var) gene. As well as demonstrating reduced asexual sensitivity to drug, certain PfK13var isolates demonstrated a marked reduction in sensitivity to artemisinin in an in vitro male gamete formation assay. Importantly, this same reduction in sensitivity was observed when the most resistant isolate was tested directly in mosquito feeds. These results indicate that, under artemisinin drug pressure, while sensitive parasites are blocked, resistant parasites continue transmission. This selective advantage for resistance transmission could favor acquisition of additional host-specificity or polymorphisms affecting partner drug sensitivity in mixed infections. Favored resistance transmission under ACT coverage could have profound implications for the spread of multidrug-resistant malaria beyond Southeast Asia.


Subject(s)
Antimalarials , Artemisinins , Culicidae , Malaria, Falciparum , Parasites , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Asia, Southeastern , Drug Resistance/genetics , Humans , Malaria, Falciparum/drug therapy , Male , Plasmodium falciparum/genetics
5.
Sci Adv ; 6(39)2020 09.
Article in English | MEDLINE | ID: mdl-32978158

ABSTRACT

Drug resistance threatens the effective prevention and treatment of an ever-increasing range of human infections. This highlights an urgent need for new and improved drugs with novel mechanisms of action to avoid cross-resistance. Current cell-based drug screens are, however, restricted to binary live/dead readouts with no provision for mechanism of action prediction. Machine learning methods are increasingly being used to improve information extraction from imaging data. These methods, however, work poorly with heterogeneous cellular phenotypes and generally require time-consuming human-led training. We have developed a semi-supervised machine learning approach, combining human- and machine-labeled training data from mixed human malaria parasite cultures. Designed for high-throughput and high-resolution screening, our semi-supervised approach is robust to natural parasite morphological heterogeneity and correctly orders parasite developmental stages. Our approach also reproducibly detects and clusters drug-induced morphological outliers by mechanism of action, demonstrating the potential power of machine learning for accelerating cell-based drug discovery.


Subject(s)
Antimalarials , Malaria , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Discovery , Humans , Machine Learning , Malaria/drug therapy , Supervised Machine Learning
6.
Sci Adv ; 6(24): eaaz5057, 2020 06.
Article in English | MEDLINE | ID: mdl-32577509

ABSTRACT

Malaria transmission requires that some asexual parasites convert into sexual forms termed gametocytes. The initial stages of sexual development, including sexually committed schizonts and sexual rings, remain poorly characterized, mainly because they are morphologically identical to their asexual counterparts and only a small subset of parasites undergo sexual development. Here, we describe a system for controlled sexual conversion in the human malaria parasite Plasmodium falciparum, based on conditional expression of the PfAP2-G transcription factor. Using this system, ~90 percent of the parasites converted into sexual forms upon induction, enabling the characterization of committed and early sexual stages without further purification. We characterized sexually committed schizonts and sexual rings at the transcriptomic and phenotypic levels, which revealed down-regulation of genes involved in solute transport upon sexual commitment, among other findings. The new inducible lines will facilitate the study of early sexual stages at additional levels, including multiomic characterization and drug susceptibility assays.


Subject(s)
Malaria , Parasites , Animals , Gene Expression Regulation , Humans , Malaria/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Transcription Factors/metabolism
7.
Sci Rep ; 10(1): 6354, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286373

ABSTRACT

The malaria parasite replicates asexually in the red blood cells of its vertebrate host employing epigenetic mechanisms to regulate gene expression in response to changes in its environment. We used chromatin immunoprecipitation followed by sequencing in conjunction with RNA sequencing to create an epigenomic and transcriptomic map of the developmental transition from asexual blood stages to male and female gametocytes and to ookinetes in the rodent malaria parasite Plasmodium berghei. Across the developmental stages examined, heterochromatin protein 1 associates with variantly expressed gene families localised at subtelomeric regions and variant gene expression based on heterochromatic silencing is observed only in some genes. Conversely, the euchromatin mark histone 3 lysine 9 acetylation (H3K9ac) is abundant in non-heterochromatic regions across all developmental stages. H3K9ac presents a distinct pattern of enrichment around the start codon of ribosomal protein genes in all stages but male gametocytes. Additionally, H3K9ac occupancy positively correlates with transcript abundance in all stages but female gametocytes suggesting that transcription in this stage is independent of H3K9ac levels. This finding together with known mRNA repression in female gametocytes suggests a multilayered mechanism operating in female gametocytes in preparation for fertilization and zygote development, coinciding with parasite transition from host to vector.


Subject(s)
Epigenesis, Genetic/genetics , Histone Code/genetics , Malaria, Falciparum/genetics , Plasmodium falciparum/genetics , Acetylation , Animals , Chromatin/genetics , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Fertilization/genetics , Gene Expression Regulation/genetics , Germ Cells/growth & development , Germ Cells/metabolism , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Plasmodium falciparum/growth & development , Plasmodium falciparum/pathogenicity , Protein Processing, Post-Translational/genetics , Sequence Analysis, RNA , Zygote/growth & development , Zygote/metabolism
8.
Arch Dis Child ; 104(12): 1138-1142, 2019 12.
Article in English | MEDLINE | ID: mdl-31744794

ABSTRACT

OBJECTIVE: The global impact of artemisinin-based combination therapies on malaria-associated mortality and their origins in ancient Chinese medicine has heightened interest in the natural discovery of future antimalarials. METHODS: A double-blind study to identify potential ingredients with antimalarial activity from traditional remedies with reported antipyretic properties. Recipes of clear broths, passed down by tradition in families of diverse ethnic origin, were sourced by school children. Broths were then tested for their ability to arrest malaria parasite asexual growth or sexual stage development in vitro. Clear broth extract was incubated with in vitro cultures of Plasmodium falciparum asexual or mature sexual stage cultures and assayed for parasite viability after 72 hours. RESULTS: Of the 56 broths tested, 5 were found to give >50% in vitro growth inhibition against P. falciparum asexual blood stages, with 2 having comparable inhibition to that seen with dihydroartemisinin, a leading antimalarial. Four other broths were found to have >50% transmission blocking activity, preventing male parasite sexual stage development. After unblinding, two active broths were found to be from siblings from different classes, who had brought in the same vegetarian soup, demonstrating assay robustness. CONCLUSIONS: This screening approach succeeded in finding broths with activity against malaria parasite in vitro growth, arising from complex vegetable and/or meat-based broths. This represented a successful child education exercise, in teaching about the interface between natural remedies, traditional medicine and evidence-based drug discovery.


Subject(s)
Antipyretics/pharmacology , Artemisinins/pharmacology , Drugs, Chinese Herbal/pharmacology , Malaria, Falciparum/diet therapy , Medicine, Chinese Traditional , Plasmodium falciparum/drug effects , Child , Double-Blind Method , Food , Humans , Malaria, Falciparum/prevention & control , Meat , Vegetables
9.
Proc Natl Acad Sci U S A ; 116(33): 16561-16570, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31358644

ABSTRACT

Monoallelic exclusion ensures that the African trypanosome Trypanosoma brucei exclusively expresses only 1 of thousands of different variant surface glycoprotein (VSG) coat genes. The active VSG is transcribed from 1 of 15 polycistronic bloodstream-form VSG expression sites (ESs), which are controlled in a mutually exclusive fashion. Unusually, T. brucei uses RNA polymerase I (Pol I) to transcribe the active ES, which is unprecedented among eukaryotes. This active ES is located within a unique extranucleolar Pol I body called the expression-site body (ESB). A stringent restriction mechanism prevents T. brucei from expressing multiple ESs at the same time, although how this is mediated is unclear. By using drug-selection pressure, we generated VSG double-expresser T. brucei lines, which have disrupted monoallelic exclusion, and simultaneously express 2 ESs in a dynamic fashion. The 2 unstably active ESs appear epigenetically similar to fully active ESs as determined by using chromatin immunoprecipitation for multiple epigenetic marks (histones H3 and H1, TDP1, and DNA base J). We find that the double-expresser cells, similar to wild-type single-expresser cells, predominantly contain 1 subnuclear ESB, as determined using Pol I or the ESB marker VEX1. Strikingly, simultaneous transcription of the 2 dynamically transcribed ESs is normally observed only when the 2 ESs are both located within this single ESB. This colocalization is reversible in the absence of drug selection. This discovery that simultaneously active ESs dynamically share a single ESB demonstrates the importance of this unique subnuclear body in restricting the monoallelic expression of VSG.


Subject(s)
Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism , Cell Line , Epigenesis, Genetic , Protein Transport , Transcription, Genetic , Trypanosoma brucei brucei/genetics
10.
Malar J ; 17(1): 282, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30075783

ABSTRACT

BACKGROUND: The study of malaria transmission requires the experimental infection of mosquitoes with Plasmodium gametocytes. In the laboratory, this is achieved using artificial membrane feeding apparatus that simulate body temperature and skin of the host, and so permit mosquito feeding on reconstituted gametocyte-containing blood. Membrane feeders either use electric heating elements or complex glass chambers to warm the infected blood; both of which are expensive to purchase and can only be sourced from a handful of specialized companies. Presented and tested here is a membrane feeder that can be inexpensively printed using 3D-printing technology. RESULTS: Using the Plasmodium falciparum laboratory strain NF54, three independent standard membrane feeding assays (SMFAs) were performed comparing the 3D-printed feeder against a commercial glass feeder. Exflagellation rates did not differ between the two feeders. Furthermore, no statistically significant difference was found in the oocyst load nor oocyst intensity of Anopheles stephensi mosquitoes (mean oocyst range 1.3-6.2 per mosquito; infection prevalence range 41-79%). CONCLUSIONS: Open source provision of the design files of the 3D-printed feeder will facilitate a wider range of laboratories to perform SMFAs in laboratory and field settings, and enable them to freely customize the design to their own requirements.


Subject(s)
Anopheles/parasitology , Entomology/methods , Malaria, Falciparum/transmission , Membranes, Artificial , Mosquito Vectors/parasitology , Parasitology/methods , Printing, Three-Dimensional/economics , Animals , Humans , Plasmodium falciparum/physiology , Printing, Three-Dimensional/instrumentation
12.
J Biol Chem ; 290(45): 26954-26967, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26378228

ABSTRACT

ISWI chromatin remodelers are highly conserved in eukaryotes and are important for the assembly and spacing of nucleosomes, thereby controlling transcription initiation and elongation. ISWI is typically associated with different subunits, forming specialized complexes with discrete functions. In the unicellular parasite Trypanosoma brucei, which causes African sleeping sickness, TbISWI down-regulates RNA polymerase I (Pol I)-transcribed variant surface glycoprotein (VSG) gene expression sites (ESs), which are monoallelically expressed. Here, we use tandem affinity purification to determine the interacting partners of TbISWI. We identify three proteins that do not show significant homology with known ISWI-associated partners. Surprisingly, one of these is nucleoplasmin-like protein (NLP), which we had previously shown to play a role in ES control. In addition, we identify two novel ISWI partners, regulator of chromosome condensation 1-like protein (RCCP) and phenylalanine/tyrosine-rich protein (FYRP), both containing protein motifs typically found on chromatin proteins. Knockdown of RCCP or FYRP in bloodstream form T. brucei results in derepression of silent variant surface glycoprotein ESs, as had previously been shown for TbISWI and NLP. All four proteins are expressed and interact with each other in both major life cycle stages and show similar distributions at Pol I-transcribed loci. They are also found at Pol II strand switch regions as determined with ChIP. ISWI, NLP, RCCP, and FYRP therefore appear to form a single major ISWI complex in T. brucei (TbIC). This reduced complexity of ISWI regulation and the presence of novel ISWI partners highlights the early divergence of trypanosomes in evolution.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Trypanosoma brucei brucei/genetics , Animals , Gene Knockdown Techniques , Genes, Protozoan , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Protein Interaction Domains and Motifs , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Transcription, Genetic , Variant Surface Glycoproteins, Trypanosoma/chemistry , Variant Surface Glycoproteins, Trypanosoma/genetics
13.
PLoS One ; 9(6): e100183, 2014.
Article in English | MEDLINE | ID: mdl-24937593

ABSTRACT

Clonally variant protein expression in the malaria parasite Plasmodium falciparum generates phenotypic variability and allows isogenic populations to adapt to environmental changes encountered during blood stage infection. The underlying regulatory mechanisms are best studied for the major virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 is encoded by the multicopy var gene family and only a single variant is expressed in individual parasites, a concept known as mutual exclusion or singular gene choice. var gene activation occurs in situ and is achieved through the escape of one locus from epigenetic silencing. Singular gene choice is controlled at the level of transcription initiation and var 5' upstream (ups) sequences harbour regulatory information essential for mutually exclusive transcription as well as for the trans-generational inheritance of the var activity profile. An additional level of control has recently been identified for the var2csa gene, where an mRNA element in the 5' untranslated region (5' UTR) is involved in the reversible inhibition of translation of var2csa transcripts. Here, we extend the knowledge on post-transcriptional var gene regulation to the common upsC type. We identified a 5' UTR sequence that inhibits translation of upsC-derived mRNAs. Importantly, this 5' UTR element efficiently inhibits translation even in the context of a heterologous upstream region. Further, we found var 5' UTRs to be significantly enriched in uAUGs which are known to impair the efficiency of protein translation in other eukaryotes. Our findings suggest that regulation at the post-transcriptional level is a common feature in the control of PfEMP1 expression in P. falciparum.


Subject(s)
5' Untranslated Regions/genetics , Gene Expression Regulation , Malaria, Falciparum/metabolism , Peptide Chain Initiation, Translational/genetics , Promoter Regions, Genetic/genetics , Protein Biosynthesis , Protozoan Proteins/genetics , Blotting, Northern , Blotting, Western , Epigenesis, Genetic , Humans , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
14.
Genome Biol ; 13(11): R108, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23181666

ABSTRACT

BACKGROUND: The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome. RESULTS: We combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways. CONCLUSION: Our study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology.


Subject(s)
Nuclear Proteins/isolation & purification , Plasmodium falciparum/metabolism , Proteomics/methods , Protozoan Proteins/isolation & purification , Cell Nucleus/metabolism , Chromatography, Liquid/methods , Erythrocytes/parasitology , Humans , Mass Spectrometry/methods , Nuclear Proteins/metabolism , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism
15.
Cell Microbiol ; 14(12): 1836-48, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22891919

ABSTRACT

Plasmodium falciparum is responsible for the most severe form of malaria in humans. Antigenic variation of P. falciparum erythrocyte membrane protein 1 leads to immune evasion and occurs through switches in mutually exclusive var gene transcription. The recent progress in Plasmodium epigenetics notwithstanding, the mechanisms by which singularity of var activation is achieved are unknown. Here, we employed a functional approach to dissect the role of var gene upstream regions in mutually exclusive activation. Besides identifying sequence elements involved in activation and initiation of transcription, we mapped a region downstream of the transcriptional start site that is required to maintain singular var gene choice. Activation of promoters lacking this sequence occurs no longer in competition with endogenous var genes. Within this region we pinpointed a sequence-specific DNA-protein interaction involving a cis-acting sequence motif that is conserved in the majority of var loci. These results suggest an important role for this interaction in mutually exclusive locus recognition. Our findings are furthermore consistent with a novel mechanism for the control of singular gene choice in eukaryotes. In addition to their importance in P. falciparum antigenic variation, our results may also help to explain similar processes in other systems.


Subject(s)
Antigenic Variation , DNA, Protozoan/metabolism , Gene Expression Regulation , Plasmodium falciparum/genetics , Plasmodium falciparum/physiology , Protozoan Proteins/biosynthesis , Promoter Regions, Genetic , Protein Binding , Protozoan Proteins/genetics , Transcription, Genetic
16.
Mol Microbiol ; 84(2): 243-59, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22435676

ABSTRACT

The Plasmodium falciparum genome is equipped with several subtelomeric gene families that are implicated in parasite virulence and immune evasion. Members of these families are uniformly positioned within heterochromatic domains and are thus subject to variegated expression. The best-studied example is that of the var family encoding the major parasite virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 undergoes antigenic variation through switches in mutually exclusive var gene transcription. var promoters function as crucial regulatory elements in the underlying epigenetic control strategy. Here, we analysed promoters of upsA, upsB and upsC var, rifA1-type rif, stevor, phist and pfmc-2tm genes and investigated their role in endogenous gene transcription by comparative genome-wide expression profiling of transgenic parasite lines. We find that the three major var promoter types are functionally equal and play an essential role in singular gene choice. Unlike var promoters, promoters of non-var families are not silenced by default, and transcription of non-var families is not subject to the same mode of mutually exclusive transcription as has been observed for var genes. Our findings identified a differential logic in the regulation of var and other subtelomeric virulence gene families, which will have important implications for our understanding and future analyses of phenotypic variation in malaria parasites.


Subject(s)
Gene Expression Regulation , Genes, Protozoan , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Virulence Factors/biosynthesis , Virulence Factors/genetics , Gene Expression Profiling , Promoter Regions, Genetic , Transcription, Genetic
17.
PLoS Pathog ; 6(2): e1000784, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20195509

ABSTRACT

The heterochromatic environment and physical clustering of chromosome ends at the nuclear periphery provide a functional and structural framework for antigenic variation and evolution of subtelomeric virulence gene families in the malaria parasite Plasmodium falciparum. While recent studies assigned important roles for reversible histone modifications, silent information regulator 2 and heterochromatin protein 1 (PfHP1) in epigenetic control of variegated expression, factors involved in the recruitment and organization of subtelomeric heterochromatin remain unknown. Here, we describe the purification and characterization of PfSIP2, a member of the ApiAP2 family of putative transcription factors, as the unknown nuclear factor interacting specifically with cis-acting SPE2 motif arrays in subtelomeric domains. Interestingly, SPE2 is not bound by the full-length protein but rather by a 60kDa N-terminal domain, PfSIP2-N, which is released during schizogony. Our experimental re-definition of the SPE2/PfSIP2-N interaction highlights the strict requirement of both adjacent AP2 domains and a conserved bipartite SPE2 consensus motif for high-affinity binding. Genome-wide in silico mapping identified 777 putative binding sites, 94% of which cluster in heterochromatic domains upstream of subtelomeric var genes and in telomere-associated repeat elements. Immunofluorescence and chromatin immunoprecipitation (ChIP) assays revealed co-localization of PfSIP2-N with PfHP1 at chromosome ends. Genome-wide ChIP demonstrated the exclusive binding of PfSIP2-N to subtelomeric SPE2 landmarks in vivo but not to single chromosome-internal sites. Consistent with this specialized distribution pattern, PfSIP2-N over-expression has no effect on global gene transcription. Hence, contrary to the previously proposed role for this factor in gene activation, our results provide strong evidence for the first time for the involvement of an ApiAP2 factor in heterochromatin formation and genome integrity. These findings are highly relevant for our understanding of chromosome end biology and variegated expression in P. falciparum and other eukaryotes, and for the future analysis of the role of ApiAP2-DNA interactions in parasite biology.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Chromosomes/genetics , Gene Expression Regulation/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/metabolism , Transcription Factors/metabolism , Blotting, Southern , Blotting, Western , Chromatin Immunoprecipitation , Chromobox Protein Homolog 5 , Electrophoretic Mobility Shift Assay , Fluorescent Antibody Technique , Genes, Protozoan , Heterochromatin , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...