Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Physiol ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345865

ABSTRACT

Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/- ), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV 1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV 1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.

2.
Sci Rep ; 13(1): 6844, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37100846

ABSTRACT

Gadolinium (Gd) deposition in the brain, first and foremost in the dentate nucleus in the cerebellum, following contrast enhanced MRI, rose awareness of potential adverse effects of gadolinium-based contrast agent (GBCA) administration. According to previous in vitro experiments, a conceivable side-effect of Gd deposition could be an alteration of gene expression. In the current study, we aimed to investigate the influence of GBCA administration on gene expression in the cerebellum of mice using a combination of elemental bioimaging and transcriptomics. In this prospective animal study, three groups of eight mice each were intravenously injected with either linear GBCA gadodiamide, macrocyclic GBCA gadoterate (1 mmol GBCA/kg body weight) or saline (NaCl 0.9%). Animals were euthanized four weeks after injection. Subsequently, Gd quantification via laser ablation-ICP-MS and whole genome gene expression analysis of the cerebellum were performed. Four weeks after single application of GBCAs to 24-31 days old female mice, traces of Gd were detectable in the cerebellum for both, the linear and macrocyclic group. Subsequent transcriptome analysis by RNA sequencing using principal component analysis did not reveal treatment-related clustering. Also differential expression analysis did not reveal any significantly differentially expressed genes between treatments.


Subject(s)
Contrast Media , Organometallic Compounds , Female , Mice , Animals , Gadolinium , Prospective Studies , Transcriptome , Gadolinium DTPA , Organometallic Compounds/pharmacology , Brain/metabolism , Magnetic Resonance Imaging/methods , Injections, Intravenous , Cerebellum/diagnostic imaging , Gene Expression Profiling
3.
Brain ; 146(3): 977-990, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35348614

ABSTRACT

Autoimmune neurological syndromes (AINS) with autoantibodies against the 65 kDa isoform of the glutamic acid decarboxylase (GAD65) present with limbic encephalitis, including temporal lobe seizures or epilepsy, cerebellitis with ataxia, and stiff-person-syndrome or overlap forms. Anti-GAD65 autoantibodies are also detected in autoimmune diabetes mellitus, which has a strong genetic susceptibility conferred by human leukocyte antigen (HLA) and non-HLA genomic regions. We investigated the genetic predisposition in patients with anti-GAD65 AINS. We performed a genome-wide association study (GWAS) and an association analysis of the HLA region in a large German cohort of 1214 individuals. These included 167 patients with anti-GAD65 AINS, recruited by the German Network for Research on Autoimmune Encephalitis (GENERATE), and 1047 individuals without neurological or endocrine disease as population-based controls. Predictions of protein expression changes based on GWAS findings were further explored and validated in the CSF proteome of a virtually independent cohort of 10 patients with GAD65-AINS and 10 controls. Our GWAS identified 16 genome-wide significant (P < 5 × 10-8) loci for the susceptibility to anti-GAD65 AINS. The top variant, rs2535288 [P = 4.42 × 10-16, odds ratio (OR) = 0.26, 95% confidence interval (CI) = 0.187-0.358], localized to an intergenic segment in the middle of the HLA class I region. The great majority of variants in these loci (>90%) mapped to non-coding regions of the genome. Over 40% of the variants have known regulatory functions on the expression of 48 genes in disease relevant cells and tissues, mainly CD4+ T cells and the cerebral cortex. The annotation of epigenomic marks suggested specificity for neural and immune cells. A network analysis of the implicated protein-coding genes highlighted the role of protein kinase C beta (PRKCB) and identified an enrichment of numerous biological pathways participating in immunity and neural function. Analysis of the classical HLA alleles and haplotypes showed no genome-wide significant associations. The strongest associations were found for the DQA1*03:01-DQB1*03:02-DRB1*04:01HLA haplotype (P = 4.39 × 10-4, OR = 2.5, 95%CI = 1.499-4.157) and DRB1*04:01 allele (P = 8.3 × 10-5, OR = 2.4, 95%CI = 1.548-3.682) identified in our cohort. As predicted, the CSF proteome showed differential levels of five proteins (HLA-A/B, C4A, ATG4D and NEO1) of expression quantitative trait loci genes from our GWAS in the CSF proteome of anti-GAD65 AINS. These findings suggest a strong genetic predisposition with direct functional implications for immunity and neural function in anti-GAD65 AINS, mainly conferred by genomic regions outside the classical HLA alleles.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Genetic Predisposition to Disease/genetics , Proteome/genetics , Histocompatibility Antigens Class II , HLA Antigens , Haplotypes , Alleles , Autoantibodies , HLA-DRB1 Chains/genetics
4.
Front Mol Neurosci ; 15: 1025389, 2022.
Article in English | MEDLINE | ID: mdl-36533130

ABSTRACT

Background: The amygdala is crucial for emotional cognitive processing. Affective or emotional states can bias cognitive processes, including attention, memory, and decision-making. This can result in optimistic or pessimistic behaviors that are partially driven by the activation of the amygdala. The resulting emotional cognitive bias is a common feature of anxiety and mood disorders, both of which are interactively influenced by genetic and environmental factors. It is also known that emotional cognitive biases can be influenced by environmental factors. However, little is known about the effects of genetics and/or gene-environment interactions on emotional cognitive biases. We investigated the effects of the genetic background and environmental enrichment on the transcriptional profiles of the mouse amygdala following a well-established cognitive bias test. Methods: Twenty-four female C57BL/6J and B6D2F1N mice were housed either in standard (control) conditions or in an enriched environment. After appropriate training, the cognitive bias test was performed on 19 mice that satisfactorily completed the training scheme to assess their responses to ambiguous cues. This allowed us to calculate an "optimism score" for each mouse. Subsequently, we dissected the anterior and posterior portions of the amygdala to perform RNA-sequencing for differential expression and other statistical analyses. Results: In general, we found only minor changes in the amygdala's transcriptome associated with the levels of optimism in our mice. In contrast, we observed wide molecular effects of the genetic background in both housing environments. The C57BL/6J animals showed more transcriptional changes in response to enriched environments than the B6D2F1N mice. We also generally found more dysregulated genes in the posterior than in the anterior portion of the amygdala. Gene set overrepresentation analyses consistently implicated cellular metabolic responses and immune processes in the differences observed between mouse strains, while processes favoring neurogenesis and neurotransmission were implicated in the responses to environmental enrichment. In a correlation analysis, lipid metabolism in the anterior amygdala was suggested to influence the levels of optimism. Conclusions: Our observations underscore the importance of selecting appropriate animal models when performing molecular studies of affective conditions or emotional states, and suggest an important role of immune and stress responses in the genetic component of emotion regulation.

5.
Front Nutr ; 9: 910762, 2022.
Article in English | MEDLINE | ID: mdl-35859757

ABSTRACT

Background: During early phases of life, such as prenatal or early postnatal development and adolescence, an organism's phenotype can be shaped by the environmental conditions it experiences. According to the Match-Mismatch hypothesis (MMH), changes to this environment during later life stages can result in a mismatch between the individual's adaptations and the prevailing environmental conditions. Thus, negative consequences in welfare and health can occur. We aimed to test the MMH in the context of food availability, assuming adolescence as a sensitive period of adaptation. Methods: We have previously reported a study of the physiological and behavioral effects of match and mismatch conditions of high (ad libitum) and low (90% of ad libitum intake) food availability from adolescence to early adulthood in female C57BL/6J mice (n = 62). Here, we performed RNA-sequencing of the livers of a subset of these animals (n = 16) to test the effects of match and mismatch feeding conditions on the liver transcriptome. Results: In general, we found no effect of the match-mismatch situations. Contrarily, the amount of food available during early adulthood (low vs. high) drove the differences we observed in final body weight and gene expression in the liver, regardless of the amount of food available to the animals during adolescence. Many of the differentially expressed genes and the corresponding biological processes found to be overrepresented overlapped, implicating common changes in various domains. These included metabolism, homeostasis, cellular responses to diverse stimuli, transport of bile acids and other molecules, cell differentiation, major urinary proteins, and immunity and inflammation. Conclusions: Our previous and present observations found no support for the MMH in the context of low vs high food availability from adolescence to early adulthood in female C57BL/6J mice. However, even small differences of approximately 10% in food availability during early adulthood resulted in physiological and molecular changes with potential beneficial implications for metabolic diseases.

6.
Elife ; 112022 05 11.
Article in English | MEDLINE | ID: mdl-35543413

ABSTRACT

The proinflammatory alarmins S100A8 and S100A9 are among the most abundant proteins in neutrophils and monocytes but are completely silenced after differentiation to macrophages. The molecular mechanisms of the extraordinarily dynamic transcriptional regulation of S100a8 and S100a9 genes, however, are only barely understood. Using an unbiased genome-wide CRISPR/Cas9 knockout (KO)-based screening approach in immortalized murine monocytes, we identified the transcription factor C/EBPδ as a central regulator of S100a8 and S100a9 expression. We showed that S100A8/A9 expression and thereby neutrophil recruitment and cytokine release were decreased in C/EBPδ KO mice in a mouse model of acute lung inflammation. S100a8 and S100a9 expression was further controlled by the C/EBPδ antagonists ATF3 and FBXW7. We confirmed the clinical relevance of this regulatory network in subpopulations of human monocytes in a clinical cohort of cardiovascular patients. Moreover, we identified specific C/EBPδ-binding sites within S100a8 and S100a9 promoter regions, and demonstrated that C/EBPδ-dependent JMJD3-mediated demethylation of H3K27me3 is indispensable for their expression. Overall, our work uncovered C/EBPδ as a novel regulator of S100a8 and S100a9 expression. Therefore, C/EBPδ represents a promising target for modulation of inflammatory conditions that are characterized by S100a8 and S100a9 overexpression.


Subject(s)
CCAAT-Enhancer-Binding Protein-delta , Calgranulin A , Calgranulin B , Epigenesis, Genetic , Alarmins , Animals , CCAAT-Enhancer-Binding Protein-delta/genetics , Calgranulin A/genetics , Calgranulin B/genetics , Mice , Transcription, Genetic
7.
Sci Rep ; 12(1): 5589, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379829

ABSTRACT

Coronary artery disease (CAD) is a long-lasting inflammatory disease characterized by monocyte migration into the vessel wall leading to clinical events like myocardial infarction (MI). However, the role of monocyte subsets, especially their miRNA-driven differentiation in this scenario is still in its infancy. Here, we characterized monocyte subsets in controls and disease phenotypes of CAD and MI patients using flow cytometry and miRNA and mRNA expression profiling using RNA sequencing. We observed major differences in the miRNA profiles between the classical (CD14++CD16-) and nonclassical (CD14+CD16++) monocyte subsets irrespective of the disease phenotype suggesting the Cyclin-dependent Kinase 6 (CDK6) to be an important player in monocyte maturation. Between control and MI patients, we found a set of miRNAs to be differentially expressed in the nonclassical monocytes and targeting CCND2 (Cyclin D2) that is able to enhance myocardial repair. Interestingly, miRNAs as miR-125b playing a role in vascular calcification were differentially expressed in the classical subset in patients suffering from CAD and not MI in comparison to control samples. In conclusion, our study describes specific peculiarities of monocyte subset miRNA expression in control and diseased samples and provides basis to further functional analysis and to identify new cardiovascular disease treatment targets.


Subject(s)
Coronary Artery Disease , MicroRNAs , Myocardial Infarction , Cell Differentiation/genetics , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Monocytes/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Receptors, IgG/metabolism
8.
Genomics ; 114(2): 110320, 2022 03.
Article in English | MEDLINE | ID: mdl-35218871

ABSTRACT

It is believed that the atria play a predominant role in the initiation and maintenance of atrial fibrillation (AF), while the role of left ventricular dysfunction in the pathophysiology remains enigmatic. We sought to dissect chamber specificity of AF-associated transcriptional changes using RNA-sequencing. We performed intra- and inter-chamber differential expression analyses comparing AF against sinus rhythm to identify genes specifically dysregulated in human left atria, right atria, and left ventricle (LV), and integrated known AF genetic associations with expression quantitative trait loci datasets to inform the potential for disease causal contributions within each chamber. Inter-chamber patterns changed drastically. Vast AF-associated transcriptional changes specific to LV, enriched for biological pathway terms implicating mitochondrial function, developmental processes and immunity, were supported at the genetic level, but no major enrichments for candidate genes specific to the atria were found. Our observations suggest an active role of the LV in the pathogenesis of AF.


Subject(s)
Atrial Fibrillation , Atrial Fibrillation/complications , Atrial Fibrillation/genetics , Heart Atria/metabolism , Heart Atria/pathology , Heart Ventricles/metabolism , Humans
9.
Hypertens Res ; 45(2): 292-307, 2022 02.
Article in English | MEDLINE | ID: mdl-34916661

ABSTRACT

Treatment of hypertension-mediated cardiac damage with left ventricular (LV) hypertrophy (LVH) and heart failure remains challenging. To identify novel targets, we performed comparative transcriptome analysis between genetic models derived from stroke-prone spontaneously hypertensive rats (SHRSP). Here, we identified carboxypeptidase X 2 (Cpxm2) as a genetic locus affecting LV mass. Analysis of isolated rat cardiomyocytes and cardiofibroblasts indicated Cpxm2 expression and intrinsic upregulation in genetic hypertension. Immunostaining indicated that CPXM2 associates with the t-tubule network of cardiomyocytes. The functional role of Cpxm2 was further investigated in Cpxm2-deficient (KO) and wild-type (WT) mice exposed to deoxycorticosterone acetate (DOCA). WT and KO animals developed severe and similar systolic hypertension in response to DOCA. WT mice developed severe LV damage, including increases in LV masses and diameters, impairment of LV systolic and diastolic function and reduced ejection fraction. These changes were significantly ameliorated or even normalized (i.e., ejection fraction) in KO-DOCA animals. LV transcriptome analysis showed a molecular cardiac hypertrophy/remodeling signature in WT but not KO mice with significant upregulation of 1234 transcripts, including Cpxm2, in response to DOCA. Analysis of endomyocardial biopsies from patients with cardiac hypertrophy indicated significant upregulation of CPXM2 expression. These data support further translational investigation of CPXM2.


Subject(s)
Hypertension , Animals , Carboxypeptidases , Cardiomegaly/genetics , Humans , Hypertrophy, Left Ventricular , Mice , Myocytes, Cardiac , Rats
10.
Genomics ; 113(6): 3782-3792, 2021 11.
Article in English | MEDLINE | ID: mdl-34506887

ABSTRACT

Cardiovascular disease (CVD) remains the leading cause of death worldwide. A deeper characterization of regional transcription patterns within different heart chambers may aid to improve our understanding of the molecular mechanisms involved in myocardial function and further, our ability to develop novel therapeutic strategies. Here, we used RNA sequencing to determine differentially expressed protein coding (PC) and long non-coding (lncRNA) transcripts within the heart chambers across seven vertebrate species and identified evolutionarily conserved chamber specific genes, lncRNAs and pathways. We investigated lncRNA homologs based on sequence, secondary structure, synteny and expressional conservation and found most lncRNAs to be conserved by synteny. Regional co-expression patterns of transcripts are modulated by multiple factors, including genomic overlap, strandedness and transcript biotype. Finally, we provide a community resource designated EvoACTG, which informs researchers on the conserved yet intertwined nature of the coding and non-coding cardiac transcriptome across popular model organisms in CVD research.


Subject(s)
RNA, Long Noncoding , Transcriptome , Genome , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sequence Analysis, RNA , Synteny
11.
RNA Biol ; 18(sup1): 409-415, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34313541

ABSTRACT

lncRNAs are at the core of many regulatory processes and have also been recognized to be involved in various complex diseases. They affect gene regulation through direct interactions with RNA, DNA or proteins. Accordingly, lncRNA structure is likely to be essential for their regulatory function. Point mutations, which manifest as SNPs (single nucleotide polymorphisms) in genome screens, can substantially alter their function and, subsequently, the expression of their downstream regulated genes. To test the effect of SNPs on structure, we investigated lncRNAs associated with dilated cardiomyopathy. Among 322 human candidate lncRNAs, we demonstrate first the significant association of an SNP located in lncRNA H19 using data from 1084 diseased and 751 control patients. H19 is generally highly expressed in the heart, with a complex expression pattern during heart development. Next, we used MFE (minimum free energy) folding to demonstrate a significant refolding in the secondary structure of this 861 nt long lncRNA. Since MFE folding may overlook the importance of sub-optimal structures, we showed that this refolding also manifests in the overall Boltzmann structure ensemble. There, the composition of structures is tremendously affected in their thermodynamic probabilities through the genetic variant. Finally, we confirmed these results experimentally, using SHAPE-Seq, corroborating that SNPs affecting such structures may explain hidden genetic variance not accounted for through genome wide association studies. Our results suggest that structural changes in lncRNAs, and lncRNA H19 in particular, affect regulatory processes and represent optimal targets for further in-depth studies probing their molecular interactions.


Subject(s)
Cardiomyopathy, Dilated/pathology , Genetic Predisposition to Disease , Nucleic Acid Conformation , Polymorphism, Single Nucleotide , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/genetics , Adult , Aged , Aged, 80 and over , Base Pairing , Base Sequence , Cardiomyopathy, Dilated/genetics , Case-Control Studies , Female , Genotype , Humans , Male , Middle Aged , Young Adult
13.
Glob Chang Biol ; 27(1): 94-107, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33067869

ABSTRACT

Global climate change can influence organismic interactions like those between hosts and parasites. Rising temperatures may exacerbate the exploitation of hosts by parasites, especially in ectothermic systems. The metabolic activity of ectotherms is strongly linked to temperature and generally increases when temperatures rise. We hypothesized that temperature change in combination with parasite infection interferes with the host's immunometabolism. We used a parasite, the avian cestode Schistocephalus solidus, which taps most of its resources from the metabolism of an ectothermic intermediate host, the three-spined stickleback. We experimentally exposed sticklebacks to this parasite, and studied liver transcriptomes 50 days after infection at 13°C and 24°C, to assess their immunometabolic responses. Furthermore, we monitored fitness parameters of the parasite and examined immunity and body condition of the sticklebacks at 13°C, 18°C and 24°C after 36, 50 and 64 days of infection. At low temperatures (13°C), S. solidus growth was constrained, presumably also by the more active stickleback's immune system, thus delaying its infectivity for the final host to 64 days. Warmer temperature (18°C and 24°C) enhanced S. solidus growth, and it became infective to the final host already after 36 days. Overall, S. solidus produced many more viable offspring after development at elevated temperatures. In contrast, stickleback hosts had lower body conditions, and their immune system was less active at warm temperature. The stickleback's liver transcriptome revealed that mainly metabolic processes were differentially regulated between temperatures, whereas immune genes were not strongly affected. Temperature effects on gene expression were strongly enhanced in infected sticklebacks, and even in exposed-but-not-infected hosts. These data suggest that the parasite exposure in concert with rising temperature, as to be expected with global climate change, shifted the host's immunometabolism, thus providing nutrients for the enormous growth of the parasite and, at the same time suppressing immune defence.


Subject(s)
Cestode Infections , Fish Diseases , Parasites , Smegmamorpha , Animals , Climate Change , Host-Parasite Interactions , Temperature
14.
PLoS One ; 15(8): e0237928, 2020.
Article in English | MEDLINE | ID: mdl-32817637

ABSTRACT

We recently reported a family-based genome wide association study (GWAS) for pediatric stroke pointing our attention to two significantly associated genes of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family ADAMTS2 (rs469568, p = 8x10-6) and ADAMTS12 (rs1364044, p = 2.9x10-6). To further investigate these candidate genes, we applied a targeted resequencing approach on 48 discordant sib-pairs for pediatric stroke followed by genotyping of the detected non-synonymous variants in the full cohort of 270 offspring trios and subsequent fine mapping analysis. We identified eight non-synonymous SNPs in ADAMTS2 and six in ADAMTS12 potentially influencing the respective protein function. These variants were genotyped within a cohort of 270 affected offspring trios, association analysis revealed the ADAMTS12 variant rs77581578 to be significantly under-transmitted (p = 6.26x10-3) to pediatric stroke patients. The finding was validated in a pediatric venous thromboembolism (VTE) cohort of 189 affected trios. Subsequent haplotype analysis of ADAMTS12 detected a significantly associated haplotype comprising the originally identified GWAS variant. Several ADAMTS genes such as ADAMTS13 are involved in thromboembolic disease process. Here, we provide further evidence for ADAMTS12 to likely play a role in pediatric stroke. Further functional studies are warranted to assess the functional role of ADAMTS12 in the pathogenesis of stroke.


Subject(s)
ADAMTS Proteins/genetics , Genetic Predisposition to Disease , Stroke/genetics , Child , Female , Genome-Wide Association Study , Genotype , Haplotypes/genetics , Humans , Male , Pediatrics , Polymorphism, Single Nucleotide/genetics , Stroke/pathology
15.
JCI Insight ; 5(16)2020 08 20.
Article in English | MEDLINE | ID: mdl-32814717

ABSTRACT

BACKGROUNDGenomic and experimental studies suggest a role for PITX2 in atrial fibrillation (AF). To assess if this association is relevant for recurrent AF in patients, we tested whether left atrial PITX2 affects recurrent AF after AF ablation.METHODSmRNA concentrations of PITX2 and its cardiac isoform, PITX2c, were quantified in left atrial appendages (LAAs) from patients undergoing thoracoscopic AF ablation, either in whole LAA tissue (n = 83) or in LAA cardiomyocytes (n = 52), and combined with clinical parameters to predict AF recurrence. Literature suggests that BMP10 is a PITX2-repressed, atrial-specific, secreted protein. BMP10 plasma concentrations were combined with 11 cardiovascular biomarkers and clinical parameters to predict recurrent AF after catheter ablation in 359 patients.RESULTSReduced concentrations of cardiomyocyte PITX2, but not whole LAA tissue PITX2, were associated with AF recurrence after thoracoscopic AF ablation (16% decreased recurrence per 2-(ΔΔCt) increase in PITX2). RNA sequencing, quantitative PCR, and Western blotting confirmed that BMP10 is one of the most PITX2-repressed atrial genes. Left atrial size (HR per mm increase [95% CI], 1.055 [1.028, 1.082]); nonparoxysmal AF (HR 1.672 [1.206, 2.318]), and elevated BMP10 (HR 1.339 [CI 1.159, 1.546] per quartile increase) were predictive of recurrent AF. BMP10 outperformed 11 other cardiovascular biomarkers in predicting recurrent AF.CONCLUSIONSReduced left atrial cardiomyocyte PITX2 and elevated plasma concentrations of the PITX2-repressed, secreted atrial protein BMP10 identify patients at risk of recurrent AF after ablation.TRIAL REGISTRATIONClinicalTrials.gov NCT01091389, NL50069.018.14, Dutch National Registry of Clinical Research Projects EK494-16.FUNDINGBritish Heart Foundation, European Union (H2020), Leducq Foundation.


Subject(s)
Atrial Appendage/cytology , Atrial Fibrillation/etiology , Atrial Fibrillation/surgery , Bone Morphogenetic Proteins/blood , Homeodomain Proteins/metabolism , Transcription Factors/metabolism , Aged , Atrial Appendage/metabolism , Biomarkers/blood , Bone Morphogenetic Proteins/metabolism , Catheter Ablation , Female , Homeodomain Proteins/genetics , Humans , Male , Middle Aged , Myocytes, Cardiac/metabolism , Thoracoscopy , Transcription Factors/genetics , Homeobox Protein PITX2
16.
Rev Sci Instrum ; 91(3): 034504, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32259966

ABSTRACT

Plants represent an essential part of future life support systems that will enable human space travel to distant planets and their colonization. Therefore, insights into changes and adaptations of plants in microgravity are of great importance. Despite considerable efforts, we still know very little about how plants respond to microgravity environments on the molecular level, partly due to a lack of sufficient hardware and flight opportunities. The plant Arabidopsis thaliana, the subject of this study, represents a well-studied model organism in gravitational biology, particularly for the analysis of transcriptional and metabolic changes. To overcome the limitations of previous plant hardware that often led to secondary effects and to allow for the extraction not only of RNA but also of phytohormones and proteins, we developed a new experimental platform, called ARABIDOMICS, for exposure and fixation under altered gravity conditions. Arabidopsis seedlings were exposed to hypergravity during launch and microgravity during the free-fall period of the MAPHEUS 5 sounding rocket. Seedlings were chemically fixed inflight at defined time points, and RNA and phytohormones were subsequently analyzed in the laboratory. RNA and phytohormones extracted from the fixed biological samples were of excellent quality. Changes in the phytohormone content of jasmonate, auxin, and several cytokinins were observed in response to hypergravity and microgravity.


Subject(s)
Arabidopsis/growth & development , Hypergravity , Phytochrome/metabolism , RNA, Plant/metabolism , Seedlings/growth & development , Weightlessness , Space Flight
17.
J Clin Med ; 8(7)2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31284699

ABSTRACT

Urinary tract infection (UTI), frequently caused by uropathogenic Escherichia coli (UPEC), is the most common infection after kidney transplantation (KTx). Untreated, it can lead to urosepsis and impairment of the graft function. We questioned whether the UPEC isolated from KTx patients differed from the UPEC of non-KTx patients. Therefore, we determined the genome sequences of 182 UPEC isolates from KTx and control patients in a large German university clinic and pheno- and genotypically compared these two isolated groups. Resistance to the ß-lactams, trimethoprim or trimethoprim/sulfamethoxazole was significantly higher among UPEC from KTx than from control patients, whereas both the isolated groups were highly susceptible to fosfomycin. Accordingly, the gene content conferring resistance to ß-lactams or trimethoprim, but also to aminoglycosides, was significantly higher in KTx than in control UPEC isolates. E. coli isolates from KTx patients more frequently presented with uncommon UPEC phylogroups expressing higher numbers of plasmid replicons, but interestingly, less UPEC virulence-associated genes than the control group. We conclude that there is no defining subset of virulence traits for UPEC from KTx patients. The clinical history and immunocompromised status of KTx patients enables E. coli strains with low uropathogenic potential, but with increased antibiotic resistance to cause UTIs.

18.
Elife ; 82019 03 22.
Article in English | MEDLINE | ID: mdl-30900988

ABSTRACT

Unraveling the genetic susceptibility of complex diseases such as chronic kidney disease remains challenging. Here, we used inbred rat models of kidney damage associated with elevated blood pressure for the comprehensive analysis of a major albuminuria susceptibility locus detected in these models. We characterized its genomic architecture by congenic substitution mapping, targeted next-generation sequencing, and compartment-specific RNA sequencing analysis in isolated glomeruli. This led to prioritization of transmembrane protein Tmem63c as a novel potential target. Tmem63c is differentially expressed in glomeruli of allele-specific rat models during onset of albuminuria. Patients with focal segmental glomerulosclerosis exhibited specific TMEM63C loss in podocytes. Functional analysis in zebrafish revealed a role for tmem63c in mediating the glomerular filtration barrier function. Our data demonstrate that integrative analysis of the genomic architecture of a complex trait locus is a powerful tool for identification of new targets such as Tmem63c for further translational investigation.


Subject(s)
Genetic Loci , Genetic Predisposition to Disease , Hypertension, Renal/physiopathology , Hypertension/complications , Multifactorial Inheritance , Nephritis/physiopathology , Albuminuria/pathology , Animals , Disease Models, Animal , Humans , Hypertension, Renal/pathology , Nephritis/pathology , Rats , Zebrafish
19.
Cell Physiol Biochem ; 52(2): 336-353, 2019.
Article in English | MEDLINE | ID: mdl-30816678

ABSTRACT

BACKGROUND/AIMS: Inflammatory processes are controlled by the fine-tuned balance of monocyte subsets. In mice, different subsets of monocytes can be distinguished by the expression of Ly6C that is highly expressed on inflammatory monocytes (Ly6Chigh) and to a lesser extent on patrolling monocytes (Ly6Clow). Our previous study revealed an accumulation of Ly6Chigh monocytes in atherosclerotic-prone mice bearing a deficiency in suppressor of cytokine signaling (SOCS)-1 leading to an increased atherosclerotic burden. To decipher the underlying mechanisms, we performed a genome-wide analysis of SOCS-1-dependent gene regulation in Ly6Chigh and Ly6Clow monocytes. METHODS: In monocyte subsets from SOCS-1competent and -deficient mice differentially regulated genes were identified using an Illumina mRNA microarray (45,200 transcripts), which were randomly validated by qPCR. Principal component analysis was performed to further characterize mRNA profiles in monocyte subsets. To unravel potential regulatory mechanisms behind the differential mRNA expression, in silico analysis of a transcription factor (TF) network correlating with SOCS-1-dependent mRNA expression was carried out and combined with a weighted correlation network analysis (WGCNA). RESULTS: mRNA analysis in monocyte subsets revealed 46 differentially regulated genes by 2-fold or more. Principal component analysis illustrated a distinct separation of mRNA profiles in monocyte subsets from SOCS-1-deficient mice. Notably, two cell surface receptors crucially involved in the determination of monocyte differentiation and survival, C-X3-C chemokine receptor 1 (CX3CR1) and colony stimulating factor 1 receptor (CSF1R), were identified to be regulated by SOCS-1. Moreover, in silico analysis of a TF network in combination with the WGCNA revealed genes coding for PPAR-γ, NUR77 and several ETSdomain proteins that act as pivotal inflammatory regulators. CONCLUSION: Our study reveals that SOCS-1 is implicated in a TF network regulating the expression of central transcription factors like PPAR-γ and NUR77 thereby influencing the expression of CX3CR1 and CSF1R that are known to be pivotal for the survival of Ly6Clow monocytes.


Subject(s)
Antigens, Ly , Atherosclerosis/metabolism , Gene Expression Regulation , Monocytes/metabolism , Suppressor of Cytokine Signaling 1 Protein/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Cell Survival , Mice , Mice, Knockout , Monocytes/pathology , Suppressor of Cytokine Signaling 1 Protein/genetics
20.
J Autoimmun ; 100: 75-83, 2019 06.
Article in English | MEDLINE | ID: mdl-30885419

ABSTRACT

Gene and protein expression profiles of iris biopsies, aqueous humor (AqH), and sera in patients with juvenile idiopathic arthritis-associated uveitis (JIAU) in comparison to control patients with primary open-angle glaucoma (POAG) and HLA-B27-positive acute anterior uveitis (AAU) were investigated. Via RNA Sequencing (RNA-Seq) and mass spectrometry-based protein expression analyses 136 genes and 56 proteins could be identified as being significantly differentially expressed (DE) between the JIAU and POAG group. Gene expression of different immunoglobulin (Ig) components as well as of the B cell-associated factors ID3, ID1, and EBF1 was significantly upregulated in the JIAU group as compared to POAG patients. qRT-PCR analysis showed a significantly higher gene expression of the B cell-related genes CD19, CD20, CD27, CD138, and MZB1 in the JIAU group. At the protein level, a significantly higher expression of Ig components in JIAU than in POAG was confirmed. The B cell-associated protein MZB1 showed a higher expression in JIAU patients than in POAG which was confirmed by western blot analysis. Using bead-based immunoassay analysis we were able to detect a significantly higher concentration of the B cell-activating and survival factors BAFF, APRIL, and IL-6 in the AqH of JIAU and AAU patients than in POAG patients. The intraocularly upregulated B cell-specific genes and proteins in iris tissue suggest that B cells participate in the immunopathology of JIAU. The intracameral environment in JIAU may facilitate local effector and survival functions of B cells, leading to disease course typical for anterior uveitis.


Subject(s)
Aqueous Humor/immunology , Arthritis, Juvenile/immunology , Eye Proteins/immunology , Gene Expression Regulation/immunology , Iris/immunology , Transcriptome/immunology , Uveitis/immunology , Adolescent , Adult , Aged , Arthritis, Juvenile/complications , Arthritis, Juvenile/pathology , Child , Child, Preschool , Female , Humans , Iris/pathology , Male , Middle Aged , Proteomics , Uveitis/etiology , Uveitis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...