Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Cancer Discov ; 4(2): 150-169, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36468984

ABSTRACT

Transformation to aggressive disease histologies generates formidable clinical challenges across cancers, but biological insights remain few. We modeled the genetic heterogeneity of chronic lymphocytic leukemia (CLL) through multiplexed in vivo CRISPR-Cas9 B-cell editing of recurrent CLL loss-of-function drivers in mice and recapitulated the process of transformation from indolent CLL into large cell lymphoma [i.e., Richter syndrome (RS)]. Evolutionary trajectories of 64 mice carrying diverse combinatorial gene assortments revealed coselection of mutations in Trp53, Mga, and Chd2 and the dual impact of clonal Mga/Chd2 mutations on E2F/MYC and interferon signaling dysregulation. Comparative human and murine RS analyses demonstrated tonic PI3K signaling as a key feature of transformed disease, with constitutive activation of the AKT and S6 kinases, downmodulation of the PTEN phosphatase, and convergent activation of MYC/PI3K transcriptional programs underlying enhanced sensitivity to MYC/mTOR/PI3K inhibition. This robust experimental system presents a unique framework to study lymphoid biology and therapy. SIGNIFICANCE: Mouse models reflective of the genetic complexity and heterogeneity of human tumors remain few, including those able to recapitulate transformation to aggressive disease histologies. Herein, we model CLL transformation into RS through multiplexed in vivo gene editing, providing key insight into the pathophysiology and therapeutic vulnerabilities of transformed disease. This article is highlighted in the In This Issue feature, p. 101.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Lymphoma, Non-Hodgkin , Humans , Animals , Mice , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Phosphatidylinositol 3-Kinases/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , B-Lymphocytes
3.
J Clin Invest ; 132(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35775490

ABSTRACT

Cancers avoid immune surveillance through an array of mechanisms, including perturbation of HLA class I antigen presentation. Merkel cell carcinoma (MCC) is an aggressive, HLA-I-low, neuroendocrine carcinoma of the skin often caused by the Merkel cell polyomavirus (MCPyV). Through the characterization of 11 newly generated MCC patient-derived cell lines, we identified transcriptional suppression of several class I antigen presentation genes. To systematically identify regulators of HLA-I loss in MCC, we performed parallel, genome-scale, gain- and loss-of-function screens in a patient-derived MCPyV-positive cell line and identified MYCL and the non-canonical Polycomb repressive complex 1.1 (PRC1.1) as HLA-I repressors. We observed physical interaction of MYCL with the MCPyV small T viral antigen, supporting a mechanism of virally mediated HLA-I suppression. We further identify the PRC1.1 component USP7 as a pharmacologic target to restore HLA-I expression in MCC.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Polyomavirus Infections , Skin Neoplasms , Antigens, Viral, Tumor/genetics , Antigens, Viral, Tumor/metabolism , Carcinoma, Merkel Cell/genetics , Carcinoma, Merkel Cell/pathology , Epigenesis, Genetic , Humans , Merkel cell polyomavirus/genetics , Merkel cell polyomavirus/metabolism , Polyomavirus Infections/genetics , Skin Neoplasms/pathology , Ubiquitin-Specific Peptidase 7/metabolism
4.
Cancer Res ; 81(24): 6117-6130, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34686499

ABSTRACT

Chronic lymphocytic leukemia (CLL) is characterized by disordered DNA methylation, suggesting these epigenetic changes might play a critical role in disease onset and progression. The methyltransferase DNMT3A is a key regulator of DNA methylation. Although DNMT3A somatic mutations in CLL are rare, we found that low DNMT3A expression is associated with more aggressive disease. A conditional knockout mouse model showed that homozygous depletion of Dnmt3a from B cells results in the development of CLL with 100% penetrance at a median age of onset of 5.3 months, and heterozygous Dnmt3a depletion yields a disease penetrance of 89% with a median onset at 18.5 months, confirming its role as a haploinsufficient tumor suppressor. B1a cells were confirmed as the cell of origin of disease in this model, and Dnmt3a depletion resulted in focal hypomethylation and activation of Notch and Myc signaling. Amplification of chromosome 15 containing the Myc gene was detected in all CLL mice tested, and infiltration of high-Myc-expressing CLL cells in the spleen was observed. Notably, hyperactivation of Notch and Myc signaling was exclusively observed in the Dnmt3a CLL mice, but not in three other CLL mouse models tested (Sf3b1-Atm, Ikzf3, and MDR), and Dnmt3a-depleted CLL were sensitive to pharmacologic inhibition of Notch signaling in vitro and in vivo. Consistent with these findings, human CLL samples with lower DNMT3A expression were more sensitive to Notch inhibition than those with higher DNMT3A expression. Altogether, these results suggest that Dnmt3a depletion induces CLL that is highly dependent on activation of Notch and Myc signaling. SIGNIFICANCE: Loss of DNMT3A expression is a driving event in CLL and is associated with aggressive disease, activation of Notch and Myc signaling, and enhanced sensitivity to Notch inhibition.


Subject(s)
DNA Methyltransferase 3A/metabolism , DNA Methyltransferase 3A/physiology , Disease Models, Animal , Drug Resistance, Neoplasm , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Notch/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , DNA Methyltransferase 3A/genetics , Daptomycin/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Prognosis , Proto-Oncogene Proteins c-myc/genetics , RNA-Seq , Receptors, Notch/antagonists & inhibitors , Receptors, Notch/genetics , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Cancer Cell ; 39(3): 380-393.e8, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33689703

ABSTRACT

Hotspot mutation of IKZF3 (IKZF3-L162R) has been identified as a putative driver of chronic lymphocytic leukemia (CLL), but its function remains unknown. Here, we demonstrate its driving role in CLL through a B cell-restricted conditional knockin mouse model. Mutant Ikzf3 alters DNA binding specificity and target selection, leading to hyperactivation of B cell receptor (BCR) signaling, overexpression of nuclear factor κB (NF-κB) target genes, and development of CLL-like disease in elderly mice with a penetrance of ~40%. Human CLL carrying either IKZF3 mutation or high IKZF3 expression was associated with overexpression of BCR/NF-κB pathway members and reduced sensitivity to BCR signaling inhibition by ibrutinib. Our results thus highlight IKZF3 oncogenic function in CLL via transcriptional dysregulation and demonstrate that this pro-survival function can be achieved by either somatic mutation or overexpression of this CLL driver. This emphasizes the need for combinatorial approaches to overcome IKZF3-mediated BCR inhibitor resistance.


Subject(s)
B-Lymphocytes/pathology , Ikaros Transcription Factor/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation/genetics , Transcription, Genetic/genetics , Animals , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , NF-kappa B/genetics , Receptors, Antigen, B-Cell/genetics , Signal Transduction/genetics
6.
Cancer Immunol Immunother ; 62(2): 347-57, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22926059

ABSTRACT

CD40L has a well-established role in enhancing the immunostimulatory capacity of normal and malignant B cells, but a formulation suitable for clinical use has not been widely available. Like other TNF family members, in vivo and in vitro activity of CD40L requires a homotrimeric configuration, and growing evidence suggests that bioactivity depends on higher-order clustering of CD40. We generated a novel formulation of human recombinant CD40L (CD40L-Tri) in which the CD40L extracellular domain and a trimerization motif are connected by a long flexible peptide linker. We demonstrate that CD40L-Tri significantly expands normal CD19+ B cells by over 20- to 30-fold over 14 days and induces B cells to become highly immunostimulatory antigen-presenting cells (APCs). Consistent with these results, CD40L-Tri-activated B cells could effectively stimulate antigen-specific T responses (against the influenza M1 peptide) from normal volunteers. In addition, CD40L-Tri could induce malignant B cells to become effective APCs, such that tumor-directed immune responses could be probed. Together, our studies demonstrate the potent immune-stimulatory effects of CD40L-Tri on B cells that enable their expansion of antigen-specific human T cells. The potent bioactivity of CD40L-Tri is related to its ability to self-multimerize, which may be facilitated by its long peptide linker.


Subject(s)
B-Lymphocytes/drug effects , CD40 Ligand/pharmacology , Recombinant Proteins/pharmacology , Adult , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Antigens, CD19/analysis , Antigens, Viral/immunology , B-Lymphocytes/immunology , CD40 Ligand/biosynthesis , CD40 Ligand/immunology , Cells, Cultured , Chemistry, Pharmaceutical , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Viral Matrix Proteins/immunology
7.
Vaccine ; 27(8): 1154-65, 2009 Feb 18.
Article in English | MEDLINE | ID: mdl-19146908

ABSTRACT

The renewed interest in strategies to combat infectious agents with epidemic potential has led to a re-examination of vaccination protocols against smallpox. To help define which antigens elicit a human antibody response, we have targeted proteins known or predicted to be presented on the surface of the intracellular mature virion (IMV) or the extracellular enveloped virion (EEV). The predicted ectodomains were expressed in a mammalian in vitro coupled transcription/translation reaction using tRNA(lys) precharged with lysine-epsilon-biotin followed by solid phase immobilization on 384-well neutravidin-coated plates. The generated array is highly specific and sensitive in a micro-ELISA format. By comparison of binding of vaccinia-immune sera to the reticulocyte lysate-produced proteins and to secreted post-translationally modified proteins, we demonstrate that for several proteins including the EEV proteins B5 and A33, proper recognition is dependent upon appropriate folding, with little dependence upon glycosylation per se. We further demonstrate that the humoral immune response to vaccinia among different individuals is not uniform in specificity or strength, as different IMV and EEV targets predominate within the group of immunogenic proteins. This heterogeneity likely results from the diversity of HLA Class II alleles and CD4 T helper cell epitopes stimulating B cell antibody production. Our findings have important implications both for design of new recombinant subunit vaccines as well as for methods of assaying the human antibody response utilizing recombinant proteins produced in vitro.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/immunology , Protein Array Analysis , Smallpox Vaccine/immunology , Vaccinia virus/immunology , Genetic Variation , Humans , Neutralization Tests , Viral Structural Proteins/immunology
8.
Mol Cell Biol ; 22(13): 4544-55, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12052864

ABSTRACT

A variety of cellular stresses activate the stress-responsive mitogen-activated protein (MAP) kinases p38 and JNK. In this study, we studied the activation mechanism of a human MAP kinase kinase kinase, MTK1 (also known as MEKK4), which mediates activation of both p38 and JNK. MTK1 has an extensive N-terminal noncatalytic domain composed of approximately 1,300 amino acids. Full-length or near full-length MTK1 is catalytically inactive when expressed in Saccharomyces cerevisiae cells, as it is in mammalian cells. Deletion of a segment including positions 253 to 553 activates kinase, indicating that this segment contains the autoinhibitory domain. In the autoinhibited conformation, the MTK1 kinase domain cannot interact with its substrate, MKK6. By a functional complementation screening with yeast cells, GADD45 proteins (GADD45alpha, beta, and gamma) were identified as MTK1 activators. GADD45 proteins bind a site in MTK1 near the inhibitory domain and relieve autoinhibition. Mutants of full-length MTK1 were isolated that can interact with MKK6 in the absence of the activator GADD45 proteins. These MTK1 mutants are constitutively active, in both yeast and mammalian cells. A model of MTK1 autoinhibition by the N-terminal inhibitory domain and activation by GADD45 binding is presented.


Subject(s)
MAP Kinase Kinase Kinases/metabolism , Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Binding Sites , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Catalytic Domain , Genetic Complementation Test , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , MAP Kinase Kinase 6 , MAP Kinase Kinase Kinase 4 , MAP Kinase Kinase Kinases/genetics , Mutation , Peptide Fragments/genetics , Peptide Fragments/isolation & purification , Peptide Fragments/metabolism , Proteins/genetics , Saccharomyces cerevisiae/genetics , GADD45 Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...