Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS Comput Biol ; 20(9): e1012417, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264975

ABSTRACT

BACKGROUND: In the modern era, the growth of scientific literature presents a daunting challenge for researchers to keep informed of advancements across multiple disciplines. OBJECTIVE: We apply natural language processing (NLP) and embedding learning concepts to design PubDigest, a tool that combs PubMed literature, aiming to pinpoint potential drugs that could be repurposed. METHODS: Using NLP, especially term associations through word embeddings, we explored unrecognized relationships between drugs and diseases. To illustrate the utility of PubDigest, we focused on chronic thromboembolic pulmonary hypertension (CTEPH), a rare disease with an overall limited number of scientific publications. RESULTS: Our literature analysis identified key clinical features linked to CTEPH by applying term frequency-inverse document frequency (TF-IDF) scoring, a technique measuring a term's significance in a text corpus. This allowed us to map related diseases. One standout was venous thrombosis (VT), which showed strong semantic links with CTEPH. Looking deeper, we discovered potential repurposing candidates for CTEPH through large-scale neural network-based contextualization of literature and predictive modeling on both the CTEPH and the VT literature corpora to find novel, yet unrecognized associations between the two diseases. Alongside the anti-thrombotic agent caplacizumab, benzofuran derivatives were an intriguing find. In particular, the benzofuran derivative amiodarone displayed potential anti-thrombotic properties in the literature. Our in vitro tests confirmed amiodarone's ability to reduce platelet aggregation significantly by 68% (p = 0.02). However, real-world clinical data indicated that CTEPH patients receiving amiodarone treatment faced a significant 15.9% higher mortality risk (p<0.001). CONCLUSIONS: While NLP offers an innovative approach to interpreting scientific literature, especially for drug repurposing, it is crucial to combine it with complementary methods like in vitro testing and real-world evidence. Our exploration with benzofuran derivatives and CTEPH underscores this point. Thus, blending NLP with hands-on experiments and real-world clinical data can pave the way for faster and safer drug repurposing approaches, especially for rare diseases like CTEPH.

2.
Eur J Cardiothorac Surg ; 64(6)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37740952

ABSTRACT

OBJECTIVES: Despite the success of coronary artery bypass graft (CABG) surgery using autologous saphenous vein grafts (SVGs), nearly 50% of patients experience vein graft disease within 10 years of surgery. One contributing factor to early vein graft disease is endothelial damage during short-term storage of SVGs in inappropriate solutions. Our aim was to evaluate the effects of a novel endothelial damage inhibitor (EDI) on SVGs from patients undergoing elective CABG surgery and on venous endothelial cells (VECs) derived from these SVGs. METHODS: SVGs from 11 patients participating in an ongoing clinical registry (NCT02922088) were included in this study, and incubated with both full electrolyte solution (FES) or EDI for 1 h and then examined histologically. In 8 of 11 patients, VECs were isolated from untreated grafts, incubated with both FES and EDI for 2 h under hypothermic stress conditions and then analysed for activation of an inflammatory phenotype, cell damage and cytotoxicity, as well as endothelial integrity and barrier function. RESULTS: The EDI was superior to FES in protecting the endothelium in SVGs (74 ± 8% versus 56 ± 8%, P < 0.001). Besides confirming that the EDI prevents apoptosis in SVG-derived VECs, we also showed that the EDI temporarily reduces adherens junctions in VECs while protecting focal adhesions compared to FES. CONCLUSIONS: The EDI protects the connectivity and function of the SVG endothelium. Our data suggest that the EDI can preserve focal adhesions in VECs during short-term storage after graft harvesting. This might explain the superiority of the EDI in maintaining most of the endothelium in venous CABG surgery conduits.


Subject(s)
Endothelial Cells , Vascular Diseases , Humans , Saphenous Vein/transplantation , Vascular Patency/physiology , Coronary Artery Bypass/adverse effects , Endothelium, Vascular
4.
Front Physiol ; 12: 708656, 2021.
Article in English | MEDLINE | ID: mdl-34421650

ABSTRACT

Cardiovascular pathology is often accompanied by changes in relative content and/or ratios of structural extracellular matrix (ECM) proteins within the heart and elastic vessels. Three of these proteins, collagen-I, collagen-III, and elastin, make up the bulk of the ECM proteins in these tissues, forming a microenvironment that strongly dictates the tissue biomechanical properties and effectiveness of cardiac and vascular function. In this review, we aim to elucidate how the ratios of collagen-I to collagen-III and elastin to collagen are altered in cardiovascular diseases and the aged individuum. We elaborate on these major cardiovascular ECM proteins in terms of structure, tissue localization, turnover, and physiological function and address how their ratios change in aging, dilated cardiomyopathy, coronary artery disease with myocardial infarction, atrial fibrillation, aortic aneurysms, atherosclerosis, and hypertension. To the end of guiding in vitro modeling approaches, we focus our review on the human heart and aorta, discuss limitations in ECM protein quantification methodology, examine comparability between studies, and highlight potential in vitro applications. In summary, we found collagen-I relative concentration to increase or stay the same in cardiovascular disease, resulting in a tendency for increased collagen-I/collagen-III and decreased elastin/collagen ratios. These ratios were found to fall on a continuous scale with ranges defining distinct pathological states as well as a significant difference between the human heart and aortic ECM protein ratios.

SELECTION OF CITATIONS
SEARCH DETAIL