Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38441268

ABSTRACT

Liquid crystals consisting of biaxial particles can exhibit a much richer phase behavior than their uniaxial counterparts. Usually, one has to rely on simulation results to understand the phase diagram of these systems since very few analytical results exist. In this work, we apply fundamental measure theory, which allows us to derive free energy functionals for hard particles from first principles and with high accuracy, to systems of hard cylinders, cones, and spherotriangles. We provide a general recipe for incorporating biaxial liquid crystal order parameters into fundamental measure theory and use this framework to obtain the phase boundaries for the emergence of orientational order in the considered systems. Our results provide insights into the phase behavior of biaxial nematic liquid crystals and, in particular, into methods for their analytical investigation.

2.
Phys Rev E ; 107(6-1): 064602, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37464670

ABSTRACT

We explore the statistics of assembling soft-matter building blocks to investigate the uptake and encapsulation of cargo particles by carriers engulfing their load. While the such carrier-cargo complexes are important for many applications out of equilibrium, such as drug delivery and synthetic cell encapsulation, we uncover here the basic statistical physics in minimal hard-core-like models for particle uptake. Introducing an exactly solvable equilibrium model in one dimension, we demonstrate that the formation of carrier-cargo complexes can be largely tuned by both the cargo concentration and the carriers' interior size. These findings are intuitively explained by interpreting the internal free space (partition function) of the cargo inside a carrier as its engulfment strength, which can be mapped to an external control parameter (chemical potential) of an additional effective particle species. Assuming a hard carrier membrane, such a mapping can be exactly applied to account for multiple cargo uptake involving various carrier or cargo species and even attractive uptake mechanisms, while soft interactions require certain approximations. We further argue that the Boltzmann occupation law identified within our approach is broken when particle uptake is governed by nonequilibrium forces. Speculating on alternative occupation laws using effective parameters, we put forward a Bose-Einstein-like phase transition associated with polydisperse carrier properties.

3.
J Chem Phys ; 158(16)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37096858

ABSTRACT

Self-assembly of chiral particles with an L-shape is explored by Monte-Carlo computer simulations in two spatial dimensions. For sufficiently high packing densities in confinement, a carpet-like texture emerges due to the interlocking of L-shaped particles, resembling a distorted smectic liquid crystalline layer pattern. From the positions of either of the two axes of the particles, two different types of layers can be extracted, which form distinct but complementary entangled networks. These coarse-grained network structures are then analyzed from a topological point of view. We propose a global charge conservation law by using an analogy to uniaxial smectics and show that the individual network topology can be steered by both confinement and particle geometry. Our topological analysis provides a general classification framework for applications to other intertwined dual networks.

4.
J Phys Condens Matter ; 35(30)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37059111

ABSTRACT

Inertial effects affecting both the translational and rotational dynamics are inherent to a broad range of active systems at the macroscopic scale. Thus, there is a pivotal need for proper models in the framework of active matter to correctly reproduce experimental results, hopefully achieving theoretical insights. For this purpose, we propose an inertial version of the active Ornstein-Uhlenbeck particle (AOUP) model accounting for particle mass (translational inertia) as well as its moment of inertia (rotational inertia) and derive the full expression for its steady-state properties. The inertial AOUP dynamics introduced in this paper is designed to capture the basic features of the well-established inertial active Brownian particle model, i.e. the persistence time of the active motion and the long-time diffusion coefficient. For a small or moderate rotational inertia, these two models predict similar dynamics at all timescales and, in general, our inertial AOUP model consistently yields the same trend upon changing the moment of inertia for various dynamical correlation functions.

5.
J Chem Phys ; 158(5): 054909, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36754783

ABSTRACT

Magnetic gels are composite materials consisting of a polymer matrix and embedded magnetic particles. Those are mechanically coupled to each other, giving rise to the magnetostrictive effects as well as to a controllable overall elasticity responsive to external magnetic fields. Due to their inherent composite and thereby multiscale nature, a theoretical framework bridging different levels of description is indispensable for understanding the magnetomechanical properties of magnetic gels. In this study, we extend a recently developed density functional approach from two spatial dimensions to more realistic three-dimensional systems. Along these lines, we connect a mesoscopic characterization resolving the discrete structure of the magnetic particles to macroscopic continuum parameters of magnetic gels. In particular, we incorporate the long-range nature of the magnetic dipole-dipole interaction and consider the approximate incompressibility of the embedding media and relative rotations with respect to an external magnetic field breaking rotational symmetry. We then probe the shape of the model system in its reference state, confirming the dependence of magnetostrictive effects on the configuration of the magnetic particles and on the shape of the considered sample. Moreover, calculating the elastic and rotational coefficients on the basis of our mesoscopic approach, we examine how the macroscopic types of behavior are related to the mesoscopic properties. Implications for real systems of random particle configurations are also discussed.

6.
Sci Rep ; 12(1): 13405, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35927292

ABSTRACT

We propose a mesoscopic Brownian magneto heat pump made of a single charged Brownian particle that is steered by an external magnetic field. The particle is subjected to two thermal noises from two different heat sources. When confined, the particle performs gyrating motion around a potential energy minimum. We show that such a magneto-gyrator can be operated as both a heat engine and a refrigerator. The maximum power delivered by the engine and the performance of the refrigerator, namely the rate of heat transferred per unit external work, can be tuned and optimised by the applied magnetic field. Further tunability of the key properties of the engine, such as the direction of gyration and the torque exerted by the engine on the confining potential, is obtained by varying the strength and direction of the applied magnetic field. In principle, our predictions can be tested by experiments with colloidal particles and complex plasmas.

7.
Phys Chem Chem Phys ; 24(26): 15691-15704, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35552573

ABSTRACT

Observing and characterizing the complex ordering phenomena of liquid crystals subjected to external constraints constitutes an ongoing challenge for chemists and physicists alike. To elucidate the delicate balance appearing when the intrinsic positional order of smectic liquid crystals comes into play, we perform Monte-Carlo simulations of rod-like particles in a range of cavities with a cylindrical symmetry. Based on recent insights into the topology of smectic orientational grain boundaries in two dimensions, we analyze the emerging three-dimensional defect structures from the perspective of tetratic symmetry. Using an appropriate three-dimensional tetratic order parameter constructed from the Steinhardt order parameters, we show that those grain boundaries can be interpreted as a pair of tetratic disclination lines that are located on the edges of the nematic domain boundary. Thereby, we shed light on the fine structure of grain boundaries in three-dimensional confined smectics.

8.
J Chem Phys ; 156(7): 071102, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35183083

ABSTRACT

We propose a new overarching model for self-propelled particles that flexibly generates a full family of "descendants." The general dynamics introduced in this paper, which we denote as the "parental" active model (PAM), unifies two special cases commonly used to describe active matter, namely, active Brownian particles (ABPs) and active Ornstein-Uhlenbeck particles (AOUPs). We thereby document the existence of a deep and close stochastic relationship between them, resulting in the subtle balance between fluctuations in the magnitude and direction of the self-propulsion velocity. Besides illustrating the relation between these two common models, the PAM can generate additional offsprings, interpolating between ABP and AOUP dynamics, that could provide more suitable models for a large class of living and inanimate active matter systems, possessing characteristic distributions of their self-propulsion velocity. Our general model is evaluated in the presence of a harmonic external confinement. For this reference example, we present a two-state phase diagram that sheds light on the transition in the shape of the positional density distribution from a unimodal Gaussian for AOUPs to a Mexican-hat-like profile for ABPs.

9.
Soft Matter ; 18(7): 1412-1422, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35080576

ABSTRACT

We study the dynamical properties of an active particle subject to a swimming speed explicitly depending on the particle position. The oscillating spatial profile of the swim velocity considered in this paper takes inspiration from experimental studies based on Janus particles whose speed can be modulated by an external source of light. We suggest and apply an appropriate model of an active Ornstein Uhlenbeck particle (AOUP) to the present case. This allows us to predict the stationary properties, by finding the exact solution of the steady-state probability distribution of particle position and velocity. From this, we obtain the spatial density profile and show that its form is consistent with the one found in the framework of other popular models. The reduced velocity distribution highlights the emergence of non-Gaussianity in our generalized AOUP model which becomes more evident as the spatial dependence of the velocity profile becomes more pronounced. Then, we focus on the time-dependent properties of the system. Velocity autocorrelation functions are studied in the steady-state combining numerical and analytical methods derived under suitable approximations. We observe a non-monotonic decay in the temporal shape of the velocity autocorrelation function which depends on the ratio between the persistence length and the spatial period of the swim velocity. In addition, we numerically and analytically study the mean square displacement and the long-time diffusion coefficient. The ballistic regime, observed in the small-time region, is deeply affected by the properties of the swim velocity landscape which induces also a crossover to a sub-ballistic but superdiffusive regime for intermediate times. Finally, the long-time diffusion coefficient decreases as the amplitude of the swim velocity oscillations increases because the diffusion is mainly determined by those regions where the particles are slow.

10.
Phys Rev Lett ; 127(19): 198001, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34797147

ABSTRACT

We propose a general formalism to characterize orientational frustration of smectic liquid crystals in confinement by interpreting the emerging networks of grain boundaries as objects with a topological charge. In a formal idealization, this charge is distributed in pointlike units of quarter-integer magnitude, which we identify with tetratic disclinations located at the end points and nodes. This coexisting nematic and tetratic order is analyzed with the help of extensive Monte Carlo simulations for a broad range of two-dimensional confining geometries as well as colloidal experiments, showing how the observed defect networks can be universally reconstructed from simple building blocks. We further find that the curvature of the confining wall determines the anchoring behavior of grain boundaries, such that the number of nodes in the emerging networks and the location of their end points can be tuned by changing the number and smoothness of corners, respectively.

11.
J Phys Condens Matter ; 34(3)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34598179

ABSTRACT

Self-propelled particles, which convert energy into mechanical motion, exhibit inertia if they have a macroscopic size or move inside a gaseous medium, in contrast to micron-sized overdamped particles immersed in a viscous fluid. Here we study an extension of the active Ornstein-Uhlenbeck model, in which self-propulsion is described by colored noise, to access these inertial effects. We summarize and discuss analytical solutions of the particle's mean-squared displacement and velocity autocorrelation function for several settings ranging from a free particle to various external influences, like a linear or harmonic potential and coupling to another particle via a harmonic spring. Taking into account the particular role of the initial particle velocity in a nonstationary setup, we observe all dynamical exponents between zero and four. After the typical inertial time, determined by the particle's mass, the results inherently revert to the behavior of an overdamped particle with the exception of the harmonically confined systems, in which the overall displacement is enhanced by inertia. We further consider an underdamped model for an active particle with a time-dependent mass, which critically affects the displacement in the intermediate time-regime. Most strikingly, for a sufficiently large rate of mass accumulation, the particle's motion is completely governed by inertial effects as it remains superdiffusive for all times.

12.
Nat Commun ; 12(1): 623, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33504780

ABSTRACT

Confined samples of liquid crystals are characterized by a variety of topological defects and can be exposed to external constraints such as extreme confinements with nontrivial topology. Here we explore the intrinsic structure of smectic colloidal layers dictated by the interplay between entropy and an imposed external topology. Considering an annular confinement as a basic example, a plethora of competing states is found with nontrivial defect structures ranging from laminar states to multiple smectic domains and arrays of edge dislocations, which we refer to as Shubnikov states in formal analogy to the characteristic of type-II superconductors. Our particle-resolved results, gained by a combination of real-space microscopy of thermal colloidal rods and fundamental-measure-based density functional theory of hard anisotropic bodies, agree on a quantitative level.

13.
PLoS One ; 15(4): e0230873, 2020.
Article in English | MEDLINE | ID: mdl-32267868

ABSTRACT

Active Brownian particles (ABPs) are physical models for motility in simple life forms and easily studied in simulations. An open question is to what extent an increase of activity by a gradient of fuel, or food in living systems, results in an evolutionary advantage of actively moving systems such as ABPs over non-motile systems, which rely on thermal diffusion only. It is an established fact that within confined systems in a stationary state, the activity of ABPs generates density profiles that are enhanced in regions of low activity, which is thus referred to as 'anti-chemotaxis'. This would suggest that a rather complex sensoric subsystem and information processing is a precondition to recognize and navigate towards a food source. We demonstrate in this work that in non-stationary setups, for instance as a result of short bursts of fuel/food, ABPs do in fact exhibit chemotactic behavior. In direct competition with inactive, but otherwise identical Brownian particles (BPs), the ABPs are shown to fetch a larger amount of food. We discuss this result based on simple physical arguments. From the biological perspective, the ability of primitive entities to move in direct response to the available amount of external energy would, even in absence of any sensoric devices, encompass an evolutionary advantage.


Subject(s)
Chemotaxis , Computer Simulation , Food , Biological Evolution , Diffusion
14.
Phys Rev E ; 100(1-1): 012605, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31499838

ABSTRACT

In this study, we formulate a density functional theory (DFT) for systems of labeled particles, considering a two-dimensional bead-spring lattice with a magnetic dipole on every bead as a model for ferrogels. On the one hand, DFT has been widely studied to investigate fluidlike states of materials, in which constituent particles are not labeled as they can exchange their positions without energy cost. On the other hand, in ferrogels consisting of magnetic particles embedded in elastic polymer matrices, the particles are labeled by their positions as their neighbors do not change over time. We resolve such an issue of particle labeling, introducing a mapping of the elastic interaction mediated by springs onto a pairwise additive interaction (pseudosprings) between unlabeled particles. We further investigate magnetostriction and changes in the elastic constants under altered magnetic interactions employing the pseudospring potential. It is revealed that there are two different response scenarios in the mechanical properties of the dipole-spring systems: While systems at low packing fractions are hardened as the magnetic moments increase in magnitude, at high packing fractions softening due to diminishing effects from the steric force, associated with increases in the volume, is observed. The validity of the theory is also verified by Monte Carlo simulations with both real springs and pseudosprings. We expect that our DFT approach may promote our understanding of materials with particle inclusions.

15.
J Chem Phys ; 150(17): 174908, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31067903

ABSTRACT

We explore the pressure of active particles on curved surfaces and its relation to other interfacial properties. We use both direct simulations of the active systems as well as simulations of an equilibrium system with effective (pair) interactions designed to capture the effects of activity. Comparing the active and effective passive systems in terms of their bulk pressure, we elaborate that the most useful theoretical route to this quantity is via the density profile at a flat wall. This is corroborated by extending the study to curved surfaces and establishing a connection to the particle adsorption and integrated surface excess pressure (surface tension). In the ideal-gas limit, the effect of curvature on the mechanical properties can be calculated analytically in the passive system with effective interactions and shows good (but not exact) agreement with simulations of the active models. It turns out that even the linear correction to the pressure is model specific and equals the planar adsorption in each case, which means that a known equilibrium sum rule can be extended to a regime at small but nonzero activity. In turn, the relation between the planar adsorption and the surface tension is reminiscent of the Gibbs adsorption theorem at an effective temperature. At finite densities, where particle interactions play a role, the presented effective-potential approximation captures the effect of density on the dependence of the pressure on curvature.

16.
Phys Rev E ; 97(1-1): 012601, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29448463

ABSTRACT

We consider the steady-state behavior of pairs of active particles having different persistence times and diffusivities. To this purpose we employ the active Ornstein-Uhlenbeck model, where the particles are driven by colored noises with exponential correlation functions whose intensities and correlation times vary from species to species. By extending Fox's theory to many components, we derive by functional calculus an approximate Fokker-Planck equation for the configurational distribution function of the system. After illustrating the predicted distribution in the solvable case of two particles interacting via a harmonic potential, we consider systems of particles repelling through inverse power-law potentials. We compare the analytic predictions to computer simulations for such soft-repulsive interactions in one dimension and show that at linear order in the persistence times the theory is satisfactory. This work provides the toolbox to qualitatively describe many-body phenomena, such as demixing and depletion, by means of effective pair potentials.

17.
J Chem Phys ; 147(13): 134908, 2017 Oct 07.
Article in English | MEDLINE | ID: mdl-28987092

ABSTRACT

A density functional theory for the bulk phase diagram of two-dimensional orientable hard rods is proposed and tested against Monte Carlo computer simulation data. In detail, an explicit density functional is derived from fundamental mixed measure theory and freely minimized numerically for hard discorectangles. The phase diagram, which involves stable isotropic, nematic, smectic, and crystalline phases, is obtained and shows good agreement with the simulation data. Our functional is valid for a multicomponent mixture of hard particles with arbitrary convex shapes and provides a reliable starting point to explore various inhomogeneous situations of two-dimensional hard rods and their Brownian dynamics.

18.
J Phys Condens Matter ; 28(24): 244003, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27115987

ABSTRACT

Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep the paper self-contained, we first discuss the recent advances in FMT for hard bodies that lead to the introduction of fundamental mixed measure theory (FMMT) in our previous paper (2015 Europhys. Lett. 109 26003). Subsequently, we provide an efficient semi-empirical alternative to FMMT and show that the phase diagram for spherocylinders is described with similar accuracy in both versions of the theory. Finally, we present a semi-empirical modification of FMMT whose predictions for the phase diagram for spherocylinders are in excellent quantitative agreement with computer simulation results.

19.
Article in English | MEDLINE | ID: mdl-26066185

ABSTRACT

In a previous publication [R. Wittmann, M. Marechal, and K. Mecke, Europhys. Lett. 109, 26003 (2015)], we introduced fundamental mixed measure theory (FMMT) for mixtures of anisotropic hard bodies, which shows that earlier results with an empirical parameter are inaccurate. Now we provide a deeper insight into the background of this theory in integral geometry. We study the Frank elastic coefficients in the nematic phase of the hard spherocylinder fluid. The framework of FMMT provides us with the required direct correlation function without additional input of an equation of state. A series representation of the mixed measure gives rise to closed analytical formulas for the elastic constants that only depend on the density, order parameters, and the particle geometry, pointing out a significant advantage of our geometry-based approach compared to other density functionals. Our elastic coefficients are in good agreement with computer simulations and increase with the density and the nematic order parameter. We confirm earlier mean-field predictions in the limits of low orientational order and infinitely long rods.

20.
J Chem Phys ; 141(6): 064103, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25134547

ABSTRACT

The recent extension of Rosenfeld's fundamental measure theory to anisotropic hard particles predicts nematic order of rod-like particles. Our analytic study of different aligned shapes provides new insights into the structure of this density functional, which is basically founded on experience with hard spheres. We combine scaling arguments with dimensional crossover and motivate a modified expression, which enables an appropriate description of smectic layering. We calculate the nematic-smectic-A transition of monodisperse hard spherocylinders with and without orientational degrees of freedom and present the equation of state and phase diagram including these two liquid crystalline phases in good agreement with simulations. We also find improved results related to the isotropic-nematic interface. We discuss the quality of empirical corrections and the convergence towards an exact second virial coefficient, including higher order terms.

SELECTION OF CITATIONS
SEARCH DETAIL
...