Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Epigenetics ; 16(1): 13, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38229153

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis. It is marked by extraordinary resistance to conventional therapies including chemotherapy and radiation, as well as to essentially all targeted therapies evaluated so far. More than 90% of PDAC cases harbor an activating KRAS mutation. As the most common KRAS variants in PDAC remain undruggable so far, it seemed promising to inhibit a downstream target in the MAPK pathway such as MEK1/2, but up to now preclinical and clinical evaluation of MEK inhibitors (MEKi) failed due to inherent and acquired resistance mechanisms. To gain insights into molecular changes during the formation of resistance to oncogenic MAPK pathway inhibition, we utilized short-term passaged primary tumor cells from ten PDACs of genetically engineered mice. We followed gain and loss of resistance upon MEKi exposure and withdrawal by longitudinal integrative analysis of whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and mass spectrometry data. RESULTS: We found that resistant cell populations under increasing MEKi treatment evolved by the expansion of a single clone but were not a direct consequence of known resistance-conferring mutations. Rather, resistant cells showed adaptive DNA hypermethylation of 209 and hypomethylation of 8 genomic sites, most of which overlap with regulatory elements known to be active in murine PDAC cells. Both DNA methylation changes and MEKi resistance were transient and reversible upon drug withdrawal. Furthermore, MEKi resistance could be reversed by DNA methyltransferase inhibition with remarkable sensitivity exclusively in the resistant cells. CONCLUSION: Overall, the concept of acquired therapy resistance as a result of the expansion of a single cell clone with epigenetic plasticity sheds light on genetic, epigenetic and phenotypic patterns during evolvement of treatment resistance in a tumor with high adaptive capabilities and provides potential for reversion through epigenetic targeting.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , DNA Methylation , Proto-Oncogene Proteins p21(ras)/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , DNA/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/therapeutic use , Cell Line, Tumor , Mutation
2.
Int J Mol Sci ; 23(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36232544

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a major risk factor for the development of lung adenocarcinoma (AC). AC often develops on underlying COPD; thus, the differentiation of both entities by biomarker is challenging. Although survival of AC patients strongly depends on early diagnosis, a biomarker panel for AC detection and differentiation from COPD is still missing. Plasma samples from 176 patients with AC with or without underlying COPD, COPD patients, and hospital controls were analyzed using mass-spectrometry-based proteomics. We performed univariate statistics and additionally evaluated machine learning algorithms regarding the differentiation of AC vs. COPD and AC with COPD vs. COPD. Univariate statistics revealed significantly regulated proteins that were significantly regulated between the patient groups. Furthermore, random forest classification yielded the best performance for differentiation of AC vs. COPD (area under the curve (AUC) 0.935) and AC with COPD vs. COPD (AUC 0.916). The most influential proteins were identified by permutation feature importance and compared to those identified by univariate testing. We demonstrate the great potential of machine learning for differentiation of highly similar disease entities and present a panel of biomarker candidates that should be considered for the development of a future biomarker panel.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Biomarkers , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Proteomics , Pulmonary Disease, Chronic Obstructive/pathology
3.
Methods Mol Biol ; 2228: 283-292, 2021.
Article in English | MEDLINE | ID: mdl-33950498

ABSTRACT

A label-free approach based on a highly reproducible and stable workflow allows for quantitative proteome analysis . Due to advantages compared to labeling methods, the label-free approach has the potential to measure unlimited samples from clinical specimen monitoring and comparing thousands of proteins. The presented label-free workflow includes a new sample preparation technique depending on automatic annotation and tissue isolation via FTIR-guided laser microdissection, in-solution digestion, LC-MS/MS analyses, data evaluation by means of Proteome Discoverer and Progenesis software, and verification of differential proteins. We successfully applied this workflow in a proteomics study analyzing human cystitis and high-grade urothelial carcinoma tissue regarding the identification of a diagnostic tissue biomarker. The differential analysis of only 1 mm2 of isolated tissue cells led to 74 significantly differentially abundant proteins.


Subject(s)
Cystitis/metabolism , Neoplasm Proteins/analysis , Proteome , Proteomics , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Urinary Bladder Neoplasms/metabolism , Urothelium/metabolism , Chromatography, High Pressure Liquid , Humans , Laser Capture Microdissection , Research Design , Spectroscopy, Fourier Transform Infrared
4.
Am J Pathol ; 189(3): 619-631, 2019 03.
Article in English | MEDLINE | ID: mdl-30770125

ABSTRACT

Histopathological differentiation between severe urocystitis with reactive urothelial atypia and carcinoma in situ (CIS) can be difficult, particularly after a treatment that deliberately induces an inflammatory reaction, such as intravesical instillation of Bacillus Calmette-Guèrin. However, precise grading in bladder cancer is critical for therapeutic decision making and thus requires reliable immunohistochemical biomarkers. Herein, an exemplary potential biomarker in bladder cancer was identified by the novel approach of Fourier transform infrared imaging for label-free tissue annotation of tissue thin sections. Identified regions of interest are collected by laser microdissection to provide homogeneous samples for liquid chromatography-tandem mass spectrometry-based proteomic analysis. This approach afforded label-free spatial classification with a high accuracy and without interobserver variability, along with the molecular resolution of the proteomic analysis. Cystitis and invasive high-grade urothelial carcinoma samples were analyzed. Three candidate biomarkers were identified and verified by immunohistochemistry in a small cohort, including low-grade urothelial carcinoma samples. The best-performing candidate AHNAK2 was further evaluated in a much larger independent verification cohort that also included CIS samples. Reactive urothelial atypia and CIS were distinguishable on the basis of the expression of this newly identified and verified immunohistochemical biomarker, with a sensitivity of 97% and a specificity of 69%. AHNAK2 can differentiate between reactive urothelial atypia in the setting of an acute or chronic cystitis and nonmuscle invasive-type CIS.


Subject(s)
Biomarkers, Tumor/metabolism , Cytoskeletal Proteins/metabolism , Neoplasm Proteins/metabolism , Proteomics , Urinary Bladder Neoplasms , Urothelium , Female , Humans , Immunohistochemistry , Male , Spectroscopy, Fourier Transform Infrared , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/metabolism , Urothelium/diagnostic imaging , Urothelium/metabolism
5.
J Proteome Res ; 16(1): 137-146, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27696881

ABSTRACT

Quantitative secretome analyses are a high-performance tool for the discovery of physiological and pathophysiological changes in cellular processes. However, serum supplements in cell culture media limit secretome analyses, but serum depletion often leads to cell starvation and consequently biased results. To overcome these limiting factors, we investigated a model of T cell activation (Jurkat cells) and performed an approach for the selective enrichment of secreted proteins from conditioned medium utilizing metabolic marking of newly synthesized glycoproteins. Marked glycoproteins were labeled via bioorthogonal click chemistry and isolated by affinity purification. We assessed two labeling compounds conjugated with either biotin or desthiobiotin and the respective secretome fractions. 356 proteins were quantified using the biotin probe and 463 using desthiobiotin. 59 proteins were found differentially abundant (adjusted p-value ≤0.05, absolute fold change ≥1.5) between inactive and activated T cells using the biotin method and 86 using the desthiobiotin approach, with 31 mutual proteins cross-verified by independent experiments. Moreover, we analyzed the cellular proteome of the same model to demonstrate the benefit of secretome analyses and provide comprehensive data sets of both. 336 proteins (61.3%) were quantified exclusively in the secretome. Data are available via ProteomeXchange with identifier PXD004280.


Subject(s)
Click Chemistry/methods , Glycoproteins/isolation & purification , Proteome/isolation & purification , Staining and Labeling/methods , Biotin/analogs & derivatives , Biotin/chemistry , Chromatography, Affinity , Culture Media, Conditioned/chemistry , Gene Expression , Gene Ontology , Glycoproteins/biosynthesis , Glycoproteins/metabolism , Humans , Jurkat Cells , Lymphocyte Activation , Molecular Sequence Annotation , Protein Biosynthesis , Proteome/biosynthesis , Proteome/metabolism , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...