Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5741, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37714832

ABSTRACT

Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood. Here, using cryo-electron microscopy in conjunction with biochemical cross-linking and integrative modeling, we localize 12 DRC subunits in the N-DRC structure of Tetrahymena thermophila. We also find that the CCDC96/113 complex is in close contact with the DRC9/10 in the linker region. In addition, we reveal that the N-DRC is associated with a network of coiled-coil proteins that most likely mediates N-DRC regulatory activity.


Subject(s)
Dyneins , Microtubule-Associated Proteins , Cryoelectron Microscopy , Cytoskeleton , Axoneme , Amyloidogenic Proteins
2.
Sci Adv ; 9(37): eadi7838, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37703372

ABSTRACT

Tubulin posttranslational modifications represent an important mechanism involved in the regulation of microtubule functions. The most widespread among them are detyrosination, α∆2-tubulin, and polyglutamylation. Here, we describe a family of tubulin-modifying enzymes composed of two closely related proteins, KIAA0895L and KIAA0895, which have tubulin metallocarboxypeptidase activity and thus were termed TMCP1 and TMCP2, respectively. We show that TMCP1 (also known as MATCAP) acts as α-tubulin detyrosinase that also catalyzes α∆2-tubulin. In contrast, TMCP2 preferentially modifies ßI-tubulin by removing three amino acids from its C terminus, generating previously unknown ßI∆3 modification. We show that ßI∆3-tubulin is mostly found on centrioles and mitotic spindles and in cilia. Moreover, we demonstrate that TMCPs also remove posttranslational polyglutamylation and thus act as tubulin deglutamylases. Together, our study describes the identification and comprehensive biochemical analysis of a previously unknown type of tubulin-modifying enzymes involved in the processing of α- and ß-tubulin C-terminal tails and deglutamylation.


Subject(s)
Carboxypeptidases , Tubulin , Microtubules , Amino Acids , Centrioles
3.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37398254

ABSTRACT

Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood. Here, utilizing cryo-electron microscopy in conjunction with biochemical cross-linking and integrative modeling, we localized 12 DRC subunits in the N-DRC structure of Tetrahymena thermophila . We also found that the CCDC96/113 complex is in close contact with the N-DRC. In addition, we revealed that the N-DRC is associated with a network of coiled-coil proteins that most likely mediates N-DRC regulatory activity.

4.
Nat Commun ; 14(1): 2168, 2023 04 15.
Article in English | MEDLINE | ID: mdl-37061538

ABSTRACT

Cilia are ubiquitous eukaryotic organelles responsible for cellular motility and sensory functions. The ciliary axoneme is a microtubule-based cytoskeleton consisting of two central singlets and nine outer doublet microtubules. Cryo-electron microscopy-based studies have revealed a complex network inside the lumen of both tubules composed of microtubule-inner proteins (MIPs). However, the functions of most MIPs remain unknown. Here, we present single-particle cryo-EM-based analyses of the Tetrahymena thermophila native doublet microtubule and identify 42 MIPs. These data shed light on the evolutionarily conserved and diversified roles of MIPs. In addition, we identified MIPs potentially responsible for the assembly and stability of the doublet outer junction. Knockout of the evolutionarily conserved outer junction component CFAP77 moderately diminishes Tetrahymena swimming speed and beat frequency, indicating the important role of CFAP77 and outer junction stability in cilia beating generation and/or regulation.


Subject(s)
Tetrahymena thermophila , Tetrahymena , Tetrahymena thermophila/metabolism , Cryoelectron Microscopy , Microtubules/metabolism , Axoneme/metabolism , Cytoskeleton/metabolism , Cilia/metabolism , Microtubule Proteins/metabolism , Tetrahymena/metabolism
5.
Semin Cell Dev Biol ; 137: 3-15, 2023 03 15.
Article in English | MEDLINE | ID: mdl-34922809

ABSTRACT

Protists are an exceptionally diverse group of mostly single-celled eukaryotes. The organization of the microtubular cytoskeleton in protists from various evolutionary lineages has different levels of sophistication, from a network of microtubules (MTs) supporting intracellular trafficking as in Dictyostelium, to complex structures such as basal bodies and cilia/flagella enabling cell motility, and lineage-specific adaptations such as the ventral disc in Giardia. MTs building these diverse structures have specific properties partly due to the presence of tubulin post-translational modifications (PTMs). Among them there are highly evolutionarily conserved PTMs: acetylation, detyrosination, (poly)glutamylation and (poly)glycylation. In some protists also less common tubulin PTMs were identified, including phosphorylation, methylation, Δ2-, Δ5- of α-tubulin, polyubiquitination, sumoylation, or S-palmitoylation. Not surprisingly, several single-celled organisms become models to study tubulin PTMs, including their effect on MT properties and discovery of the modifying enzymes. Here, we briefly summarize the current knowledge on tubulin PTMs in unicellular eukaryotes and highlight key findings in protists as model organisms.


Subject(s)
Dictyostelium , Tubulin , Tubulin/metabolism , Dictyostelium/metabolism , Microtubules/metabolism , Protein Processing, Post-Translational , Eukaryota/metabolism
6.
Cells ; 11(24)2022 12 14.
Article in English | MEDLINE | ID: mdl-36552811

ABSTRACT

Motile cilia and eukaryotic flagella are specific cell protrusions that are conserved from protists to humans. They are supported by a skeleton composed of uniquely organized microtubules-nine peripheral doublets and two central singlets (9 × 2 + 2). Microtubules also serve as docking sites for periodically distributed multiprotein ciliary complexes. Radial spokes, the T-shaped ciliary complexes, repeat along the outer doublets as triplets and transduce the regulatory signals from the cilium center to the outer doublet-docked dynein arms. Using the genetic, proteomic, and microscopic approaches, we have shown that lack of Tetrahymena Cfap91 protein affects stable docking/positioning of the radial spoke RS3 and the base of RS2, and adjacent inner dynein arms, possibly due to the ability of Cfap91 to interact with a molecular ruler protein, Ccdc39. The localization studies confirmed that the level of RS3-specific proteins, Cfap61 and Cfap251, as well as RS2-associated Cfap206, are significantly diminished in Tetrahymena CFAP91-KO cells. Cilia of Tetrahymena cells with knocked-out CFAP91 beat in an uncoordinated manner and their beating frequency is dramatically reduced. Consequently, CFAP91-KO cells swam about a hundred times slower than wild-type cells. We concluded that Tetrahymena Cfap91 localizes at the base of radial spokes RS2 and RS3 and likely plays a role in the radial spoke(s) positioning and stability.


Subject(s)
Cilia , Tetrahymena , Axoneme/metabolism , Cilia/metabolism , Dyneins , Proteomics , Tetrahymena/metabolism
8.
Int J Mol Sci ; 23(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35163666

ABSTRACT

Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.


Subject(s)
Ciliary Motility Disorders/genetics , Disease Models, Animal , Animals , Aquatic Organisms/physiology , Cell Culture Techniques , Humans , Mammals/physiology
9.
Sci Rep ; 11(1): 11760, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083607

ABSTRACT

Motile cilia are ultrastructurally complex cell organelles with the ability to actively move. The highly conserved central apparatus of motile 9 × 2 + 2 cilia is composed of two microtubules and several large microtubule-bound projections, including the C1b/C1f supercomplex. The composition and function of C1b/C1f subunits has only recently started to emerge. We show that in the model ciliate Tetrahymena thermophila, C1b/C1f contains several evolutionarily conserved proteins: Spef2A, Cfap69, Cfap246/LRGUK, Adgb/androglobin, and a ciliate-specific protein Tt170/TTHERM_00205170. Deletion of genes encoding either Spef2A or Cfap69 led to a loss of the entire C1b projection and resulted in an abnormal vortex motion of cilia. Loss of either Cfap246 or Adgb caused only minor alterations in ciliary motility. Comparative analyses of wild-type and C1b-deficient mutant ciliomes revealed that the levels of subunits forming the adjacent C2b projection but not C1d projection are greatly reduced, indicating that C1b stabilizes C2b. Moreover, the levels of several IFT and BBS proteins, HSP70, and enzymes that catalyze the final steps of the glycolytic pathway: enolase ENO1 and pyruvate kinase PYK1, are also reduced in the C1b-less mutants.


Subject(s)
Cilia/metabolism , Microtubules/metabolism , Protein Interaction Domains and Motifs , Cell Movement/genetics , Cilia/classification , Cilia/genetics , Cilia/ultrastructure , Conserved Sequence , Mass Spectrometry , Microtubules/chemistry , Microtubules/ultrastructure , Models, Biological , Phylogeny , Protein Interaction Domains and Motifs/genetics , Sequence Deletion , Tetrahymena thermophila
10.
Int J Mol Sci ; 22(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809498

ABSTRACT

Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.


Subject(s)
Cilia/metabolism , Flagella/metabolism , Nanoparticles/chemistry , Animals , Cilia/ultrastructure , Evolution, Molecular , Microtubules/metabolism , Proteins/metabolism
11.
Sci Rep ; 11(1): 7899, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846423

ABSTRACT

The base of the cilium comprising the transition zone (TZ) and transition fibers (TF) acts as a selecting gate to regulate the intraflagellar transport (IFT)-dependent trafficking of proteins to and from cilia. Before entering the ciliary compartment, IFT complexes and transported cargoes accumulate at or near the base of the cilium. The spatial organization of IFT proteins at the cilia base is key for understanding cilia formation and function. Using stochastic optical reconstruction microscopy (STORM) and computational averaging, we show that seven TZ, nine IFT, three Bardet-Biedl syndrome (BBS), and one centrosomal protein, form 9-clustered rings at the cilium base of a ciliate Tetrahymena thermophila. In the axial dimension, analyzed TZ proteins localize to a narrow region of about 30 nm while IFT proteins dock approximately 80 nm proximal to TZ. Moreover, the IFT-A subcomplex is positioned peripheral to the IFT-B subcomplex and the investigated BBS proteins localize near the ciliary membrane. The positioning of the HA-tagged N- and C-termini of the selected proteins enabled the prediction of the spatial orientation of protein particles and likely cargo interaction sites. Based on the obtained data, we built a comprehensive 3D-model showing the arrangement of the investigated ciliary proteins.


Subject(s)
Cilia/metabolism , Flagella/metabolism , Microscopy/methods , Tetrahymena/metabolism , Bardet-Biedl Syndrome/metabolism , Biological Transport , Ciliopathies/genetics , Ciliopathies/pathology , Humans , Mutation/genetics , Protozoan Proteins/metabolism
12.
PLoS Genet ; 17(3): e1009388, 2021 03.
Article in English | MEDLINE | ID: mdl-33661892

ABSTRACT

Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising the evolutionarily conserved proteins Ccdc96 and Ccdc113, positioned parallel to N-DRC and forming a connection between RS3, dynein g, and N-DRC. Although Ccdc96 and Ccdc113 can be transported to cilia independently, their stable docking and function requires the presence of both proteins. Deletion of either CCDC113 or CCDC96 alters cilia beating frequency, amplitude and waveform. We propose that the Ccdc113/Ccdc96 complex transmits signals from RS3 and N-DRC to dynein g and thus regulates its activity and the ciliary beat pattern.


Subject(s)
Carrier Proteins/metabolism , Cilia/physiology , Dyneins/metabolism , Microtubule-Associated Proteins/metabolism , Multiprotein Complexes/metabolism , Plant Proteins/metabolism , Axoneme/metabolism , Carrier Proteins/chemistry , Chlamydomonas/physiology , Cilia/ultrastructure , Flagella/physiology , Flagella/ultrastructure , Fluorescent Antibody Technique , Microtubule-Associated Proteins/chemistry , Multiprotein Complexes/ultrastructure , Protein Conformation , Protein Transport , Structure-Activity Relationship , Tetrahymena thermophila/physiology
13.
BMC Ecol Evol ; 21(1): 46, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33740894

ABSTRACT

BACKGROUND: Nbp35-like proteins (Nbp35, Cfd1, HCF101, Ind1, and AbpC) are P-loop NTPases that serve as components of iron-sulfur cluster (FeS) assembly machineries. In eukaryotes, Ind1 is present in mitochondria, and its function is associated with the assembly of FeS clusters in subunits of respiratory Complex I, Nbp35 and Cfd1 are the components of the cytosolic FeS assembly (CIA) pathway, and HCF101 is involved in FeS assembly of photosystem I in plastids of plants (chHCF101). The AbpC protein operates in Bacteria and Archaea. To date, the cellular distribution of these proteins is considered to be highly conserved with only a few exceptions. RESULTS: We searched for the genes of all members of the Nbp35-like protein family and analyzed their targeting sequences. Nbp35 and Cfd1 were predicted to reside in the cytoplasm with some exceptions of Nbp35 localization to the mitochondria; Ind1was found in the mitochondria, and HCF101 was predicted to reside in plastids (chHCF101) of all photosynthetically active eukaryotes. Surprisingly, we found a second HCF101 paralog in all members of Cryptista, Haptista, and SAR that was predicted to predominantly target mitochondria (mHCF101), whereas Ind1 appeared to be absent in these organisms. We also identified a few exceptions, as apicomplexans possess mHCF101 predicted to localize in the cytosol and Nbp35 in the mitochondria. Our predictions were experimentally confirmed in selected representatives of Apicomplexa (Toxoplasma gondii), Stramenopila (Phaeodactylum tricornutum, Thalassiosira pseudonana), and Ciliophora (Tetrahymena thermophila) by tagging proteins with a transgenic reporter. Phylogenetic analysis suggested that chHCF101 and mHCF101 evolved from a common ancestral HCF101 independently of the Nbp35/Cfd1 and Ind1 proteins. Interestingly, phylogenetic analysis supports rather a lateral gene transfer of ancestral HCF101 from bacteria than its acquisition being associated with either α-proteobacterial or cyanobacterial endosymbionts. CONCLUSION: Our searches for Nbp35-like proteins across eukaryotic lineages revealed that SAR, Haptista, and Cryptista possess mitochondrial HCF101. Because plastid localization of HCF101 was only known thus far, the discovery of its mitochondrial paralog explains confusion regarding the presence of HCF101 in organisms that possibly lost secondary plastids (e.g., ciliates, Cryptosporidium) or possess reduced nonphotosynthetic plastids (apicomplexans).


Subject(s)
Cryptosporidiosis , Cryptosporidium , Iron-Sulfur Proteins , Animals , Iron , Iron-Sulfur Proteins/genetics , Phylogeny , Sulfur
14.
J Cell Biol ; 219(9)2020 09 07.
Article in English | MEDLINE | ID: mdl-32642758

ABSTRACT

Not much is known about how organelles organize into patterns. In ciliates, the cortical pattern is propagated during "tandem duplication," a cell division that remodels the parental cell into two daughter cells. A key step is the formation of the division boundary along the cell's equator. In Tetrahymena thermophila, the cdaA alleles prevent the formation of the division boundary. We find that the CDAA gene encodes a cyclin E that accumulates in the posterior cell half, concurrently with accumulation of CdaI, a Hippo/Mst kinase, in the anterior cell half. The division boundary forms between the margins of expression of CdaI and CdaA, which exclude each other from their own cortical domains. The activities of CdaA and CdaI must be balanced to initiate the division boundary and to position it along the cell's equator. CdaA and CdaI cooperate to position organelles near the new cell ends. Our data point to an intracellular positioning mechanism involving antagonistic Hippo signaling and cyclin E.


Subject(s)
Cyclin E/metabolism , Protein Serine-Threonine Kinases/metabolism , Protozoan Proteins/metabolism , Signal Transduction/physiology , Amino Acid Sequence , Cell Division/physiology , Humans , Organelles/metabolism , Tetrahymena thermophila/metabolism
15.
Eur J Protistol ; 76: 125722, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32679518

ABSTRACT

Cilia and flagella play an important role in motility, sensory perception, and the life cycles of eukaryotes, from protists to humans. However, much critical information concerning cilia structure and function remains elusive. The vast majority of ciliary and flagellar proteins analyzed so far are evolutionarily conserved and play a similar role in protozoa and vertebrates. This makes protozoa attractive biological models for studying cilia biology. Research conducted on ciliated or flagellated protists may improve our general understanding of cilia protein composition, of cilia beating, and can shed light on the molecular basis of the human disorders caused by motile cilia dysfunction. The Symposium "From genomics to flagellar and ciliary structures and cytoskeleton dynamics" at ECOP2019 in Rome presented the latest discoveries about cilia biogenesis and the molecular mechanisms of ciliary and flagellum motility based on studies in Paramecium, Tetrahymena, and Trypanosoma. Here, we review the most relevant aspects presented and discussed during the symposium and add our perspectives for future research.


Subject(s)
Cytoskeleton/ultrastructure , Genome, Protozoan/genetics , Paramecium , Tetrahymena , Trypanosoma , Cilia/genetics , Congresses as Topic , Flagella/genetics , Paramecium/genetics , Paramecium/ultrastructure , Tetrahymena/genetics , Tetrahymena/ultrastructure , Trypanosoma/genetics , Trypanosoma/ultrastructure
16.
Cells ; 9(2)2020 01 25.
Article in English | MEDLINE | ID: mdl-31991798

ABSTRACT

Katanin-like 2 protein (Katnal2) orthologs have a tripartite domain organization. Two highly conserved regions, an N-terminal LisH (Lis-homology) domain and a C-terminal AAA catalytic domain, are separated by a less conserved linker. The AAA domain of Katnal2 shares the highest amino acid sequence homology with the AAA domain of the canonical katanin p60. Katnal2 orthologs are present in a wide range of eukaryotes, from protists to humans. In the ciliate Tetrahymena thermophila, a Katnal2 ortholog, Kat2, co-localizes with the microtubular structures, including basal bodies and ciliary outer doublets, and this co-localization is sensitive to levels of microtubule glutamylation. The functional analysis of Kat2 domains suggests that an N-terminal fragment containing a LisH domain plays a role in the subcellular localization, dimerization, and stability of Kat2.


Subject(s)
Katanin/genetics , Katanin/metabolism , Microtubules/metabolism , Tetrahymena/metabolism , Glutamic Acid/metabolism , Microscopy, Electron, Transmission , Microtubules/ultrastructure , Mutation , Protein Domains , Protein Multimerization/genetics , Protein Stability , Tetrahymena/enzymology , Tetrahymena/genetics , Tetrahymena/ultrastructure
17.
Cells ; 8(12)2019 12 11.
Article in English | MEDLINE | ID: mdl-31835861

ABSTRACT

Primary ciliary dyskinesia (PCD) is a recessive heterogeneous disorder of motile cilia, affecting one per 15,000-30,000 individuals; however, the frequency of this disorder is likely underestimated. Even though more than 40 genes are currently associated with PCD, in the case of approximately 30% of patients, the genetic cause of the manifested PCD symptoms remains unknown. Because motile cilia are highly evolutionarily conserved organelles at both the proteomic and ultrastructural levels, analyses in the unicellular and multicellular model organisms can help not only to identify new proteins essential for cilia motility (and thus identify new putative PCD-causative genes), but also to elucidate the function of the proteins encoded by known PCD-causative genes. Consequently, studies involving model organisms can help us to understand the molecular mechanism(s) behind the phenotypic changes observed in the motile cilia of PCD affected patients. Here, we summarize the current state of the art in the genetics and biology of PCD and emphasize the impact of the studies conducted using model organisms on existing knowledge.


Subject(s)
Ciliary Motility Disorders/genetics , Disease Models, Animal , Rare Diseases/metabolism , Animals , Cilia/metabolism , Cilia/ultrastructure , Ciliary Motility Disorders/metabolism , Gene Regulatory Networks , Genetic Predisposition to Disease , Humans
18.
Cells ; 8(7)2019 07 17.
Article in English | MEDLINE | ID: mdl-31319499

ABSTRACT

Cilia are highly evolutionarily conserved, microtubule-based cell protrusions present in eukaryotic organisms from protists to humans, with the exception of fungi and higher plants. Cilia can be broadly divided into non-motile sensory cilia, called primary cilia, and motile cilia, which are locomotory organelles. The skeleton (axoneme) of primary cilia is formed by nine outer doublet microtubules distributed on the cilium circumference. In contrast, the skeleton of motile cilia is more complex: in addition to outer doublets, it is composed of two central microtubules and several diverse multi-protein complexes that are distributed periodically along both types of microtubules. For many years, researchers have endeavored to fully characterize the protein composition of ciliary macro-complexes and the molecular basis of signal transduction between these complexes. Genetic and biochemical analyses have suggested that several hundreds of proteins could be involved in the assembly and function of motile cilia. Within the last several years, the combined efforts of researchers using cryo-electron tomography, genetic and biochemical approaches, and diverse model organisms have significantly advanced our knowledge of the ciliary structure and protein composition. Here, we summarize the recent progress in the identification of the subunits of ciliary complexes, their precise intraciliary localization determined by cryo-electron tomography data, and the role of newly identified proteins in cilia.


Subject(s)
Axonemal Dyneins/metabolism , Cilia/metabolism , Microtubule-Associated Proteins/metabolism , Animals , Axonemal Dyneins/chemistry , Axonemal Dyneins/genetics , Cilia/chemistry , Cilia/genetics , Humans , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics
19.
PLoS Genet ; 15(7): e1008099, 2019 07.
Article in English | MEDLINE | ID: mdl-31339880

ABSTRACT

The length of cilia is controlled by a poorly understood mechanism that involves members of the conserved RCK kinase group, and among them, the LF4/MOK kinases. The multiciliated protist model, Tetrahymena, carries two types of cilia (oral and locomotory) and the length of the locomotory cilia is dependent on their position with the cell. In Tetrahymena, loss of an LF4/MOK ortholog, LF4A, lengthened the locomotory cilia, but also reduced their number. Without LF4A, cilia assembled faster and showed signs of increased intraflagellar transport (IFT). Consistently, overproduced LF4A shortened cilia and downregulated IFT. GFP-tagged LF4A, expressed in the native locus and imaged by total internal reflection microscopy, was enriched at the basal bodies and distributed along the shafts of cilia. Within cilia, most LF4A-GFP particles were immobile and a few either diffused or moved by IFT. We suggest that the distribution of LF4/MOK along the cilium delivers a uniform dose of inhibition to IFT trains that travel from the base to the tip. In a longer cilium, the IFT machinery may experience a higher cumulative dose of inhibition by LF4/MOK. Thus, LF4/MOK activity could be a readout of cilium length that helps to balance the rate of IFT-driven assembly with the rate of disassembly at steady state. We used a forward genetic screen to identify a CDK-related kinase, CDKR1, whose loss-of-function suppressed the shortening of cilia caused by overexpression of LF4A, by reducing its kinase activity. Loss of CDKR1 alone lengthened both the locomotory and oral cilia. CDKR1 resembles other known ciliary CDK-related kinases: LF2 of Chlamydomonas, mammalian CCRK and DYF-18 of C. elegans, in lacking the cyclin-binding motif and acting upstream of RCKs. The new genetic tools we developed here for Tetrahymena have potential for further dissection of the principles of cilia length regulation in multiciliated cells.


Subject(s)
Cilia/metabolism , Cyclin-Dependent Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Tetrahymena/cytology , Gene Expression Regulation , Locomotion , Protozoan Proteins/metabolism , Tetrahymena/metabolism , Tetrahymena/physiology
20.
J Cell Biol ; 217(12): 4298-4313, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30217954

ABSTRACT

Cilia, essential motile and sensory organelles, have several compartments: the basal body, transition zone, and the middle and distal axoneme segments. The distal segment accommodates key functions, including cilium assembly and sensory activities. While the middle segment contains doublet microtubules (incomplete B-tubules fused to complete A-tubules), the distal segment contains only A-tubule extensions, and its existence requires coordination of microtubule length at the nanometer scale. We show that three conserved proteins, two of which are mutated in the ciliopathy Joubert syndrome, determine the geometry of the distal segment, by controlling the positions of specific microtubule ends. FAP256/CEP104 promotes A-tubule elongation. CHE-12/Crescerin and ARMC9 act as positive and negative regulators of B-tubule length, respectively. We show that defects in the distal segment dimensions are associated with motile and sensory deficiencies of cilia. Our observations suggest that abnormalities in distal segment organization cause a subset of Joubert syndrome cases.


Subject(s)
Armadillo Domain Proteins/metabolism , Cell Cycle Proteins/metabolism , Cilia/metabolism , Microtubules/metabolism , Protozoan Proteins/metabolism , Tetrahymena thermophila/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Armadillo Domain Proteins/genetics , Cell Cycle Proteins/genetics , Cerebellum/abnormalities , Cerebellum/metabolism , Cilia/genetics , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Humans , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Microtubules/genetics , Protozoan Proteins/genetics , Retina/abnormalities , Retina/metabolism , Tetrahymena thermophila/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...