Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 13(6): e2303405, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37949452

ABSTRACT

Stem cell therapy serves as an effective treatment for bone regeneration. Nevertheless, stem cells from bone marrow and peripheral blood are still lacking homologous properties. Dental pulp stem cells (DPSCs) are derived from neural crest, in coincidence with maxillofacial tissues, thus attracting great interest in in situ maxillofacial regenerative medicine. However, insufficient number and heterogenous alteration of seed cells retard further exploration of DPSC-based tissue engineering. Electric stimulation has recently attracted great interest in tissue regeneration. In this study, a novel DPSC-loaded conductive hydrogel microspheres integrated with wireless electric generator is fabricated. Application of exogenous electric cues can promote stemness maintaining and heterogeneity suppression for unpredictable differentiation of encapsulated DPSCs. Further investigations observe that electric signal fine-tunes regenerative niche by improvement on DPSC-mediated paracrine pattern, evidenced by enhanced angiogenic behavior and upregulated anti-inflammatory macrophage polarization. By wireless electric stimulation on implanted conductive hydrogel microspheres, loaded DPSCs facilitates the construction of immuno-angiogenic niche at early stage of tissue repair, and further contributes to advanced autologous mandibular bone defect regeneration. This novel strategy of DPSC-based tissue engineering exhibits promising translational and therapeutic potential for autologous maxillofacial tissue regeneration.


Subject(s)
Cues , Hydrogels , Microspheres , Electric Conductivity , Bone Regeneration
2.
ACS Nano ; 17(22): 22830-22843, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37943709

ABSTRACT

Mimicking the temporal pattern of biological behaviors during the natural repair process is a promising strategy for biomaterial-mediated tissue regeneration. However, precise regulation of dynamic cell behaviors allocated in a microenvironment post-implantation remains challenging until now. Here, remote tuning of electric cues is accomplished by wireless ultrasound stimulation (US) on an electroactive membrane for bone regeneration under a diabetic background. Programmable electric cues mediated by US from the piezoelectric membrane achieve the temporal regulation of macrophage polarization, satisfying the pattern of immunoregulation during the natural healing process and effectively promoting diabetic bone repair. Mechanistic insight reveals that the controllable decrease in AKT2 expression and phosphorylation could explain US-mediated macrophage polarization. This study exhibits a strategy aimed at precisely biosimulating the temporal regenerative pattern by controllable and programmable electric output for optimized diabetic tissue regeneration and provides basic insights into bionic design-based precision medicine achieved by intelligent and external field-responsive biomaterials.


Subject(s)
Cues , Diabetes Mellitus , Humans , Biocompatible Materials/pharmacology , Bone Regeneration , Immunomodulation
3.
EBioMedicine ; 88: 104444, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36709580

ABSTRACT

BACKGROUND: Tumor-resident microbiota has been documented for various cancer types. Oral squamous cell carcinoma (OSCC) is also enriched with microbiota, while the significance of microbiota in shaping the OSCC microenvironment remains elusive. METHODS: We used bioinformatics and clinical sample analysis to explore relationship between F. nucleatum and OSCC progression. Xenograft tumor model, metabolic screening and RNA sequencing were performed to elucidate mechanisms of pro-tumor role of F. nucleatum. FINDINGS: We show that a major protumorigenic bacterium, F. nucleatum, accumulates in invasive margins of OSCC tissues and drives tumor-associated macrophages (TAMs) formation. The mechanistic dissection shows that OSCC-resident F. nucleatum triggers the GalNAc-Autophagy-TBC1D5 signaling, leading to GLUT1 aggregation in the plasma membrane and the deposition of extracellular lactate. Simultaneous functional inhibition of GalNAc and GLUT1 efficiently reduces TAMs formation and restrains OSCC progression. INTERPRETATION: These findings suggest that tumor-resident microbiota affects the immunomodulatory and protumorigenic microenvironment via modulating glycolysis and extracellular lactate deposition. The targeted intervention of this process could provide a distinct clinical strategy for patients with advanced OSCC. FUNDING: This work was supported by the National Natural Science Foundation of China for Key Program Projects (82030070, to LC) and Distinguished Young Scholars (31725011, to LC), as well as Innovation Team Project of Hubei Province (2020CFA014, to LC).


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms/metabolism , Lactic Acid , Glucose Transporter Type 1/genetics , Tumor Microenvironment , GTPase-Activating Proteins/metabolism
4.
Carbohydr Polym ; 298: 120127, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36241299

ABSTRACT

Critical-sized maxillofacial bone defects have been a tough clinical challenge considering their requirements for functional and structural repair. In this study, an injectable in-situ forming double cross-linked hydrogel was prepared from gelatin (Gel), 20 mg/mL alginate dialdehyde (ADA), 4.5 mg/mL Ca2+ and borax. Improved properties of composite hydrogel might well fit and cover irregular geometric shape of facial bone defects, support facial structures and conduct masticatory force. We innovatively constructed a bioactive poly-porous structure by decoration with nano-sized hydroxyapatite (nHA). The highly ordered, homogeneous and size-confined porous surface served as an interactive osteogenic platform for communication and interplay between macrophages and bone marrow derived stem cells (BMSCs). Effective macrophage-BMSC crosstalk well explained the remarkable efficiency of nHA-loaded gelatin/alginate hydrogel (nHA@Gel/ADA) in the repair of critical-size skull bone defect. Collectively, the composite hydrogel constructed here might serve as a promising alternative in repair process of complex maxillofacial bone defects.


Subject(s)
Gelatin , Mesenchymal Stem Cells , Alginates/chemistry , Bone Regeneration , Durapatite/chemistry , Gelatin/chemistry , Hydrogels/chemistry , Osteogenesis , Tissue Engineering , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...