Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 25(3): 432-447, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38409259

ABSTRACT

Central nervous system (CNS)-resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including multiple sclerosis (MS). Several studies have demonstrated the involvement of pro-inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from patients with MS in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of autoimmune neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a modulator of autoimmune CNS inflammation and potential therapeutic target in MS.


Subject(s)
Astrocytes , Multiple Sclerosis , Animals , Humans , Mice , Anti-Inflammatory Agents , Disease Models, Animal , Epigenesis, Genetic , Heparin-binding EGF-like Growth Factor/genetics , Inflammation , Proteomics
2.
Nat Immunol ; 24(11): 1790-1791, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37872317
3.
Sci Adv ; 7(5)2021 01.
Article in English | MEDLINE | ID: mdl-33514545

ABSTRACT

Slow progress in the fight against neurodegenerative diseases (NDs) motivates an urgent need for highly controlled in vitro systems to investigate organ-organ- and organ-immune-specific interactions relevant for disease pathophysiology. Of particular interest is the gut/microbiome-liver-brain axis for parsing out how genetic and environmental factors contribute to NDs. We have developed a mesofluidic platform technology to study gut-liver-cerebral interactions in the context of Parkinson's disease (PD). It connects microphysiological systems (MPSs) of the primary human gut and liver with a human induced pluripotent stem cell-derived cerebral MPS in a systemically circulated common culture medium containing CD4+ regulatory T and T helper 17 cells. We demonstrate this approach using a patient-derived cerebral MPS carrying the PD-causing A53T mutation, gaining two important findings: (i) that systemic interaction enhances features of in vivo-like behavior of cerebral MPSs, and (ii) that microbiome-associated short-chain fatty acids increase expression of pathology-associated pathways in PD.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Parkinson Disease , Brain/metabolism , Humans , Liver/metabolism , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism
4.
bioRxiv ; 2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33330870

ABSTRACT

Prolonged SARS-CoV-2 RNA shedding and recurrence of PCR-positive tests have been widely reported in patients after recovery, yet these patients most commonly are non-infectious. Here we investigated the possibility that SARS-CoV-2 RNAs can be reverse-transcribed and integrated into the human genome and that transcription of the integrated sequences might account for PCR-positive tests. In support of this hypothesis, we found chimeric transcripts consisting of viral fused to cellular sequences in published data sets of SARS-CoV-2 infected cultured cells and primary cells of patients, consistent with the transcription of viral sequences integrated into the genome. To experimentally corroborate the possibility of viral retro-integration, we describe evidence that SARS-CoV-2 RNAs can be reverse transcribed in human cells by reverse transcriptase (RT) from LINE-1 elements or by HIV-1 RT, and that these DNA sequences can be integrated into the cell genome and subsequently be transcribed. Human endogenous LINE-1 expression was induced upon SARS-CoV-2 infection or by cytokine exposure in cultured cells, suggesting a molecular mechanism for SARS-CoV-2 retro-integration in patients. This novel feature of SARS-CoV-2 infection may explain why patients can continue to produce viral RNA after recovery and suggests a new aspect of RNA virus replication.

5.
Nature ; 586(7829): 440-444, 2020 10.
Article in English | MEDLINE | ID: mdl-32698189

ABSTRACT

Methyl CpG binding protein 2 (MeCP2) is a key component of constitutive heterochromatin, which is crucial for chromosome maintenance and transcriptional silencing1-3. Mutations in the MECP2 gene cause the progressive neurodevelopmental disorder Rett syndrome3-5, which is associated with severe mental disability and autism-like symptoms that affect girls during early childhood. Although previously thought to be a dense and relatively static structure1,2, heterochromatin is now understood to exhibit properties consistent with a liquid-like condensate6,7. Here we show that MeCP2 is a dynamic component of heterochromatin condensates in cells, and is stimulated by DNA to form liquid-like condensates. MeCP2 contains several domains that contribute to the formation of condensates, and mutations in MECP2 that lead to Rett syndrome disrupt the ability of MeCP2 to form condensates. Condensates formed by MeCP2 selectively incorporate and concentrate heterochromatin cofactors rather than components of euchromatic transcriptionally active condensates. We propose that MeCP2 enhances the separation of heterochromatin and euchromatin through its condensate partitioning properties, and that disruption of condensates may be a common consequence of mutations in MeCP2 that cause Rett syndrome.


Subject(s)
Heterochromatin/metabolism , Intellectual Disability/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mutation , Adaptive Immunity , Animals , Female , Immunity, Innate , Intellectual Disability/pathology , Methyl-CpG-Binding Protein 2/genetics , Mice , Neurons/metabolism , Neurons/pathology , Phenotype , Rett Syndrome/genetics
6.
J Neurosci ; 36(23): 6165-74, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27277795

ABSTRACT

UNLABELLED: Cortical spreading depression (CSD) is a propagating event of neuronal depolarization, which is considered as the cellular correlate of the migraine aura. It is characterized by a change in the intrinsic optical signal and by a negative DC potential shift. Microglia are the resident macrophages of the CNS and act as sensors for pathological changes. In the present study, we analyzed whether microglial cells might sense CSD by recording membrane currents from microglia in acutely isolated cortical mouse brain slices during an experimentally induced CSD. Coincident with the change in the intrinsic optical signal and the negative DC potential shift we recorded an increase in potassium conductance predominantly mediated by K(+) inward rectifier (Kir)2.1, which was blocked by the NMDA receptor antagonist D-AP5. Application of NMDA and an increase in extracellular K(+) mimics the CSD-induced Kir activation. Application of D-AP5, but not the purinergic receptor antagonist RB2, blocks the NMDA-induced Kir activation. The K(+) channel blocker Ba(2+) blocks both the CSD- and the NMDA-triggered increase in Kir channel activity. In addition, we could confirm previous findings that microglia in the adult brain do not express functional NMDA receptors by recording from microglia cultured from adult brain. From these observations we conclude that CSD activates neuronal NMDA receptors, which lead to an increase in extracellular [K(+)] resulting in the activation of Kir channel activity in microglia. SIGNIFICANCE STATEMENT: Cortical spreading depression (CSD) is a wave of neuronal depolarization spreading through the cortex and is associated with the aura of migraine. Here we show that microglial cells, which are viewed as pathologic sensors of the brain, can sense this wave. The increase in the extracellular potassium concentration associated with that wave leads to the activation of an inward rectifying potassium conductance in microglia. The involvement of neuronal NMDA receptors is crucial because NMDA mimics that response and microglia do not express functional NMDA receptors. Although it is now evident that CSD leads to a signal in microglia, the consequences of this microglial activation during CSD needs to be explored.


Subject(s)
Cortical Spreading Depression/physiology , Microglia/physiology , Potassium Channels, Inwardly Rectifying/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , 2-Amino-5-phosphonovalerate/pharmacology , Age Factors , Animals , Animals, Newborn , Barium/pharmacology , Cells, Cultured , Cortical Spreading Depression/drug effects , Enzyme Inhibitors/pharmacology , Female , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , N-Methylaspartate/pharmacology , Potassium/metabolism , Potassium/pharmacology , Potassium Channel Blockers/pharmacology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
7.
Eur J Neurosci ; 43(11): 1523-34, 2016 06.
Article in English | MEDLINE | ID: mdl-27060918

ABSTRACT

Microglia are innate immune cells of the brain. We have studied a subpopulation of microglia, called satellite microglia. This cell type is defined by a close morphological soma-to-soma association with a neuron, indicative of a direct functional interaction. Indeed, ultrastructural analysis revealed closely attached plasma membranes of satellite microglia and neurons. However, we found no apparent morphological specializations of the contact, and biocytin injection into satellite microglia showed no dye-coupling with the apposed neurons or any other cell. Likewise, evoked local field potentials or action potentials and postsynaptic potentials of the associated neuron did not lead to any transmembrane currents or non-capacitive changes in the membrane potential of the satellite microglia in the cortex and hippocampus. Both satellite and non-satellite microglia, however, showed spontaneous transient membrane depolarizations that were not correlated with neuronal activity. These events could be divided into fast-rising and slow-rising depolarizations, which showed different characteristics in satellite and non-satellite microglia. Fast-rising and slow-rising potentials differed with regard to voltage dependence. The frequency of these events was not affected by the application of tetrodotoxin, but the fast-rising event frequency decreased after application of GABA. We conclude that microglia show spontaneous electrical activity that is uncorrelated with the activity of adjacent neurons.


Subject(s)
Membrane Potentials , Microglia/physiology , Neurons/physiology , Animals , Cell Communication , Female , Male , Mice , Mice, Inbred C57BL , Microglia/ultrastructure , Neurons/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...